Does anyone know of a way, in Java, to convert an earth surface position from lat, lon to UTM (say in WGS84)? I'm currently looking at Geotools but unfortunately the solution is not obvious.
No Library, No Nothing. Copy This!
Using These Two Classes , You can Convert Degree(latitude/longitude) to UTM and Vice Versa!
private class Deg2UTM { double Easting; double Northing; int Zone; char Letter; private Deg2UTM(double Lat,double Lon) { Zone= (int) Math.floor(Lon/6+31); if (Lat<-72) Letter='C'; else if (Lat<-64) Letter='D'; else if (Lat<-56) Letter='E'; else if (Lat<-48) Letter='F'; else if (Lat<-40) Letter='G'; else if (Lat<-32) Letter='H'; else if (Lat<-24) Letter='J'; else if (Lat<-16) Letter='K'; else if (Lat<-8) Letter='L'; else if (Lat<0) Letter='M'; else if (Lat<8) Letter='N'; else if (Lat<16) Letter='P'; else if (Lat<24) Letter='Q'; else if (Lat<32) Letter='R'; else if (Lat<40) Letter='S'; else if (Lat<48) Letter='T'; else if (Lat<56) Letter='U'; else if (Lat<64) Letter='V'; else if (Lat<72) Letter='W'; else Letter='X'; Easting=0.5*Math.log((1+Math.cos(Lat*Math.PI/180)*Math.sin(Lon*Math.PI/180-(6*Zone-183)*Math.PI/180))/(1-Math.cos(Lat*Math.PI/180)*Math.sin(Lon*Math.PI/180-(6*Zone-183)*Math.PI/180)))*0.9996*6399593.62/Math.pow((1+Math.pow(0.0820944379, 2)*Math.pow(Math.cos(Lat*Math.PI/180), 2)), 0.5)*(1+ Math.pow(0.0820944379,2)/2*Math.pow((0.5*Math.log((1+Math.cos(Lat*Math.PI/180)*Math.sin(Lon*Math.PI/180-(6*Zone-183)*Math.PI/180))/(1-Math.cos(Lat*Math.PI/180)*Math.sin(Lon*Math.PI/180-(6*Zone-183)*Math.PI/180)))),2)*Math.pow(Math.cos(Lat*Math.PI/180),2)/3)+500000; Easting=Math.round(Easting*100)*0.01; Northing = (Math.atan(Math.tan(Lat*Math.PI/180)/Math.cos((Lon*Math.PI/180-(6*Zone -183)*Math.PI/180)))-Lat*Math.PI/180)*0.9996*6399593.625/Math.sqrt(1+0.006739496742*Math.pow(Math.cos(Lat*Math.PI/180),2))*(1+0.006739496742/2*Math.pow(0.5*Math.log((1+Math.cos(Lat*Math.PI/180)*Math.sin((Lon*Math.PI/180-(6*Zone -183)*Math.PI/180)))/(1-Math.cos(Lat*Math.PI/180)*Math.sin((Lon*Math.PI/180-(6*Zone -183)*Math.PI/180)))),2)*Math.pow(Math.cos(Lat*Math.PI/180),2))+0.9996*6399593.625*(Lat*Math.PI/180-0.005054622556*(Lat*Math.PI/180+Math.sin(2*Lat*Math.PI/180)/2)+4.258201531e-05*(3*(Lat*Math.PI/180+Math.sin(2*Lat*Math.PI/180)/2)+Math.sin(2*Lat*Math.PI/180)*Math.pow(Math.cos(Lat*Math.PI/180),2))/4-1.674057895e-07*(5*(3*(Lat*Math.PI/180+Math.sin(2*Lat*Math.PI/180)/2)+Math.sin(2*Lat*Math.PI/180)*Math.pow(Math.cos(Lat*Math.PI/180),2))/4+Math.sin(2*Lat*Math.PI/180)*Math.pow(Math.cos(Lat*Math.PI/180),2)*Math.pow(Math.cos(Lat*Math.PI/180),2))/3); if (Letter<'M') Northing = Northing + 10000000; Northing=Math.round(Northing*100)*0.01; } } private class UTM2Deg { double latitude; double longitude; private UTM2Deg(String UTM) { String[] parts=UTM.split(" "); int Zone=Integer.parseInt(parts[0]); char Letter=parts[1].toUpperCase(Locale.ENGLISH).charAt(0); double Easting=Double.parseDouble(parts[2]); double Northing=Double.parseDouble(parts[3]); double Hem; if (Letter>'M') Hem='N'; else Hem='S'; double north; if (Hem == 'S') north = Northing - 10000000; else north = Northing; latitude = (north/6366197.724/0.9996+(1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)-0.006739496742*Math.sin(north/6366197.724/0.9996)*Math.cos(north/6366197.724/0.9996)*(Math.atan(Math.cos(Math.atan(( Math.exp((Easting - 500000) / (0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting - 500000) / (0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2)/3))-Math.exp(-(Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*( 1 - 0.006739496742*Math.pow((Easting - 500000) / (0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2)/3)))/2/Math.cos((north-0.9996*6399593.625*(north/6366197.724/0.9996-0.006739496742*3/4*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.pow(0.006739496742*3/4,2)*5/3*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996 )/2)+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4-Math.pow(0.006739496742*3/4,3)*35/27*(5*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/3))/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2))+north/6366197.724/0.9996)))*Math.tan((north-0.9996*6399593.625*(north/6366197.724/0.9996 - 0.006739496742*3/4*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.pow(0.006739496742*3/4,2)*5/3*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2*north/6366197.724/0.9996 )*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4-Math.pow(0.006739496742*3/4,3)*35/27*(5*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/3))/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2))+north/6366197.724/0.9996))-north/6366197.724/0.9996)*3/2)*(Math.atan(Math.cos(Math.atan((Math.exp((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2)/3))-Math.exp(-(Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2)/3)))/2/Math.cos((north-0.9996*6399593.625*(north/6366197.724/0.9996-0.006739496742*3/4*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.pow(0.006739496742*3/4,2)*5/3*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4-Math.pow(0.006739496742*3/4,3)*35/27*(5*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/3))/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2))+north/6366197.724/0.9996)))*Math.tan((north-0.9996*6399593.625*(north/6366197.724/0.9996-0.006739496742*3/4*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.pow(0.006739496742*3/4,2)*5/3*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4-Math.pow(0.006739496742*3/4,3)*35/27*(5*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/3))/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2))+north/6366197.724/0.9996))-north/6366197.724/0.9996))*180/Math.PI; latitude=Math.round(latitude*10000000); latitude=latitude/10000000; longitude =Math.atan((Math.exp((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2)/3))-Math.exp(-(Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2)/3)))/2/Math.cos((north-0.9996*6399593.625*( north/6366197.724/0.9996-0.006739496742*3/4*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.pow(0.006739496742*3/4,2)*5/3*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2* north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4-Math.pow(0.006739496742*3/4,3)*35/27*(5*(3*(north/6366197.724/0.9996+Math.sin(2*north/6366197.724/0.9996)/2)+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/4+Math.sin(2*north/6366197.724/0.9996)*Math.pow(Math.cos(north/6366197.724/0.9996),2)*Math.pow(Math.cos(north/6366197.724/0.9996),2))/3)) / (0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2))))*(1-0.006739496742*Math.pow((Easting-500000)/(0.9996*6399593.625/Math.sqrt((1+0.006739496742*Math.pow(Math.cos(north/6366197.724/0.9996),2)))),2)/2*Math.pow(Math.cos(north/6366197.724/0.9996),2))+north/6366197.724/0.9996))*180/Math.PI+Zone*6-183; longitude=Math.round(longitude*10000000); longitude=longitude/10000000; } }
I was able to use Geotools 2.4 to get something that works, based on some example code.
double utmZoneCenterLongitude = ... // Center lon of zone, example: zone 10 = -123 int zoneNumber = ... // zone number, example: 10 double latitude, longitude = ... // lat, lon in degrees MathTransformFactory mtFactory = ReferencingFactoryFinder.getMathTransformFactory(null); ReferencingFactoryContainer factories = new ReferencingFactoryContainer(null); GeographicCRS geoCRS = org.geotools.referencing.crs.DefaultGeographicCRS.WGS84; CartesianCS cartCS = org.geotools.referencing.cs.DefaultCartesianCS.GENERIC_2D; ParameterValueGroup parameters = mtFactory.getDefaultParameters("Transverse_Mercator"); parameters.parameter("central_meridian").setValue(utmZoneCenterLongitude); parameters.parameter("latitude_of_origin").setValue(0.0); parameters.parameter("scale_factor").setValue(0.9996); parameters.parameter("false_easting").setValue(500000.0); parameters.parameter("false_northing").setValue(0.0); Map properties = Collections.singletonMap("name", "WGS 84 / UTM Zone " + zoneNumber); ProjectedCRS projCRS = factories.createProjectedCRS(properties, geoCRS, null, parameters, cartCS); MathTransform transform = CRS.findMathTransform(geoCRS, projCRS); double[] dest = new double[2]; transform.transform(new double[] {longitude, latitude}, 0, dest, 0, 1); int easting = (int)Math.round(dest[0]); int northing = (int)Math.round(dest[1]);
The transformation of a coordinate can actually be done in only a few lines of code:
Coordinate coordinate = new Coordinate(x, y);
MathTransform transform = CRS.findMathTransform(CRS.decode("EPSG:4326"), CRS.decode("EPSG:3857"), false);
JTS.transform(coordinate, coordinate, transform);
This will transform a longitude/latitude coordinate (EPSG:4326) into Web Mercator projection (EPSG:3857) coordinate.
You just need to depend on the following two GeoTools libraries in your build tool (e.g. maven):
<repositories>
<repository>
<id>osgeo</id>
<name>Open Source Geospatial Foundation Repository</name>
<url>http://download.osgeo.org/webdav/geotools/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.geotools</groupId>
<artifactId>gt-api</artifactId>
<version>${geotools.version}</version>
</dependency>
<dependency>
<groupId>org.geotools</groupId>
<artifactId>gt-epsg-hsql</artifactId>
<version>${geotools.version}</version>
</dependency>
</dependencies>
This answer builds on a question/reply on gis.stackexchange.com. Posted my reply because the current answers here seem to be quite verbose.
For my projects I've using the library LatLongLib, from Ahmed Taha. I think that it's very easy to convert coordinates from the UTM system to the Latitude-Longitude system and vice-versa. You just need to play with the classes UTMUtils, UTMPoint and LatLonPoint.
Time ago I also considered choosing Jcoord. It was easy and straight to the point too. However, I needed to use the WGS84 ellipsoid and, at that time, only LatLongLib seemed to have that feature.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With