Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Is this variant of the subset sum problem easier to solve?

I have a problem related to the subset sum problem and am wondering if the differences make it easier, i.e. solvable in a reasonable amount of time.

Given a value V, a set size L, and a sequence of numbers [1,N] S, how many size L subsets of S sum to less than V?

This is different than the subset sum problem in three ways:

  1. I care how many subsets are less than a given value, not how many are equal.
  2. The subset sizes are fixed.
  3. I care how many sets sum to less than V, not just whether any exist.

Is there any reasonably efficient algorithm to solve this?

Edit: Obviously, this can be done in O(N choose L) using a combination generating algorithm. What I'm really interested in is clever hacks to significantly speed it up past that.

like image 609
dsimcha Avatar asked Dec 17 '08 20:12

dsimcha


People also ask

Is subset sum problem NP hard?

SSP can also be regarded as an optimization problem: find a subset whose sum is at most T, and subject to that, as close as possible to T. It is NP-hard, but there are several algorithms that can solve it reasonably quickly in practice.

How sum of subset problem is solved?

Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set with sum equal to given sum. Example: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9 Output: True There is a subset (4, 5) with sum 9.

What are the two important things be considered while taking the values for sum of subset problem?

a) Recursive Approach In order to write a recursive solution, one must be able to figure out two things : Base Condition & Recursion Logic/Recurrence Relation. Base Condition : The base condition always refers to the smallest possible case(s) for the problem we are trying to solve.

Is the sum of subsets the decision problem or the optimization problem is it in NP explain why?

Subset Sum is a true decision problem, not an optimization problem forced to become a decision problem. It is easy to see that Subset Sum is in NP. We prove that Subset Sum is NP-complete by reduction from Vertex Cover.


1 Answers

(The decision version of) your problem is still NP-complete. The idea is that if we could solve your problem, then (for each subset size, say) we could ask how many sets sum to less than V and how many sum to less than V-1, and the difference of those two numbers would tell us whether are subsets that sum to exactly V -- thus we could solve the subset sum problem. [This is not a complete proof, because it's a Turing reduction, not a many one reduction.]

However, there is a simple dynamic programming solution that runs in time O(nLV). [The reason this does not prove that P=NP is that V could be exponential in the input size: with n bits, you can represent values upto 2n. But assuming that your V is not exponential, this is not a problem.]

Let num[v][k][i] denote the number of size-k subsets of the first i elements of S that sum to v. You can calculate them as (for each i):

    num[0][0][i] = 1
    for v = 1 to V:
        for k = 1 to L:
            num[v][k][i] = num[v][k][i-1] + num[v-S[i]][k-1][i-1]

where S[i] is the ith element in your sequence. (Any set of size k that sums to v either doesn't use S[i], so it's counted in num[v][k][i-1], or it uses S[i] which means that the rest of the subset has k-1 elements, uses only the first i-1 numbers in the sequence, and sums to v-S[i].) Finally, count num[v][L][|S|] for each v less than V; that's your answer.

Also, you can omit the third subscript if you do it carefully (run your loop downwards for each i, etc.); I only included it for clarity.

like image 114
ShreevatsaR Avatar answered Oct 19 '22 05:10

ShreevatsaR