I usually program by functions in an "instinctive" manner, but my current problem can be easily solved by objects, so I go ahead with this method.
Doing so, I am trying to find a way to give an object a constructor method, the equivalent of init() in python, for example.
I looked in the http://www.rebol.com/docs/core-fr/fr-index.html documentation, but I couldn't find anything relevant.
There is no special constructor function in Rebol, but there is a possibility to write ad hoc init code if you need it on object's creation in the spec block. For example:
a: context [x: 123]
b: make a [
y: x + 1
x: 0
]
So, if you define your own "constructor" function by convention in the base object, you can call it the spec block on creation. If you want to make it automatic, you can wrap that in a function, like this:
a: context [
x: 123
init: func [n [integer!]][x: n]
]
new-a: func [n [integer!]][make a [init n]]
b: new-a 456
A more robust (but bit longer) version of new-a that would avoid the possible collision of passed arguments to init with object's own words would be:
new-a: func [n [integer!] /local obj][
also
obj: make a []
obj/init n
]
You could also write a more generic new function that would take a base object as first argument and automatically invoke a constructor-by-convention function after cloning the object, but supporting optional constructor arguments in a generic way is then more tricky.
Remember that the object model of Rebol is prototype-based (vs class-based in Python and most other OOP languages), so the "constructor" function gets duplicated for each new object created. You might want to avoid such cost if you are creating a huge number of objects.
To my knowledge, there is no formal method/convention for using object constructors such as init()
. There is of course the built-in method of constructing derivative objects:
make prototype [name: "Foo" description: "Bar"]
; where type? prototype = object!
My best suggestion would be to define a function that inspects an object for a constructor method, then applies that method, here's one such function that I've proposed previously:
new: func [prototype [object!] args [block! none!]][
prototype: make prototype [
if in self 'new [
case [
function? :new [apply :new args]
block? :new [apply func [args] :new [args]]
]
]
]
]
The usage is quite straightforward: if a prototype object has a new
value, then it will be applied in the construction of the derivative object:
thing: context [
name: description: none
new: [name: args/1 description: args/2]
]
derivative: new thing ["Foo" "Bar"]
note that this approach works in both Rebol 2 and 3.
Actually, by reading again the Rebol Core documentation (I just followed the good old advice: "Read The French Manual"), there is another way to implement a constructor, quite simple:
http://www.rebol.com/docs/core-fr/fr-rebolcore-10.html#section-8
Of course it is also in The English Manual:
http://www.rebol.com/docs/core23/rebolcore-10.html#section-7
=>
Another example of using the self variable is a function that clones itself:
person: make object! [
name: days-old: none
new: func [name' birthday] [
make self [
name: name'
days-old: now/date - birthday
]
]
]
lulu: person/new "Lulu Ulu" 17-May-1980
print lulu/days-old
7366
I find this quite convenient, and this way, the constructor lies within the object. This fact makes the object more self-sufficient.
I just implemented that successfully for some geological stuff, and it works well:
>> source orientation
orientation: make object! [
matrix: []
north_reference: "Nm"
plane_quadrant_dip: ""
new: func [{Constructor, builds an orientation object! based on a measurement, as given by GeolPDA device, a rotation matrix represented by a suite of 9 values} m][
make self [
foreach [a b c] m [append/only matrix to-block reduce [a b c]]
a: self/matrix/1/1
b: self/matrix/1/2
c: self/matrix/1/3
d: self/matrix/2/1
e: self/matrix/2/2
f: self/matrix/2/3
g: self/matrix/3/1
h: self/matrix/3/2
i: self/matrix/3/3
plane_normal_vector: reduce [matrix/1/3
matrix/2/3
matrix/3/3
]
axis_vector: reduce [self/matrix/1/2
self/matrix/2/2
self/matrix/3/2
]
plane_downdip_azimuth: azimuth_vector plane_normal_vector
plane_direction: plane_downdip_azimuth - 90
if (plane_direction < 0) [plane_direction: plane_direction - 180]
plane_dip: arccosine (plane_normal_vector/3)
case [
((plane_downdip_azimuth > 315) or (plane_downdip_azimuth <= 45)) [plane_quadrant_dip: "N"]
((plane_downdip_azimuth > 45) and (plane_downdip_azimuth <= 135)) [plane_quadrant_dip: "E"]
((plane_downdip_azimuth > 135) and (plane_downdip_azimuth <= 225)) [plane_quadrant_dip: "S"]
((plane_downdip_azimuth > 225) and (plane_downdip_azimuth <= 315)) [plane_quadrant_dip: "W"]
]
line_azimuth: azimuth_vector axis_vector
line_plunge: 90 - (arccosine (axis_vector/3))
]
]
repr: func [][
print rejoin ["Matrix: " tab self/matrix
newline
"Plane: " tab
north_reference to-string to-integer self/plane_direction "/" to-string to-integer self/plane_dip "/" self/plane_quadrant_dip
newline
"Line: " tab
rejoin [north_reference to-string to-integer self/line_azimuth "/" to-string to-integer self/line_plunge]
]
]
trace_te: func [diagram [object!]][
len_queue_t: 0.3
tmp: reduce [
plane_normal_vector/1 / (square-root (((plane_normal_vector/1 ** 2) + (plane_normal_vector/2 ** 2))))
plane_normal_vector/2 / (square-root (((plane_normal_vector/1 ** 2) + (plane_normal_vector/2 ** 2))))
]
O: [0 0]
A: reduce [- tmp/2
tmp/1
]
B: reduce [tmp/2 0 - tmp/1]
C: reduce [tmp/1 * len_queue_t
tmp/2 * len_queue_t
]
L: reduce [- axis_vector/1 0 - axis_vector/2]
append diagram/plot [pen black]
diagram/trace_line A B
diagram/trace_line O C
diagram/trace_line O L
]
]
>> o: orientation/new [0.375471 -0.866153 -0.32985 0.669867 0.499563 -0.549286 0.640547 -0.0147148 0.767778]
>> o/repr
Matrix: 0.375471 -0.866153 -0.32985 0.669867 0.499563 -0.549286 0.640547 -0.0147148 0.767778
Plane: Nm120/39/S
Line: Nm299/0
Another advantage of this way is that variables defined by the "new" method directly belongs to the object "instance" (I ran into some trouble, with the other methods, having to mention self/ sometimes, having to initialize variables or not).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With