Logo Questions Linux Laravel Mysql Ubuntu Git Menu

Is there an implementation of missingmaps in python's ecosystem?

Missingmaps generates a plot of missing values in a dataframe (more details at http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/Amelia/html/missmap.html).

Is there anything similar in python's ecosystem? (pandas/matplotlib?)

An example of how it looks like

like image 296
user2808117 Avatar asked Mar 21 '23 12:03


1 Answers

EDIT: As of June 2016 there's a package for this now: https://github.com/ResidentMario/missingno Original answer follows:

This gets pretty close:

ax = missmap(df)

enter image description here

import pandas as pd

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import collections as collections
from matplotlib.patches import Rectangle
from itertools import izip, cycle

def missmap(df, ax=None, colors=None, aspect=4, sort='descending',
            title=None, **kwargs):
    Plot the missing values of df.

    df : pandas DataFrame
    ax : matplotlib axes
        if None then a new figure and axes will be created
    colors : dict
        dict with {True: c1, False: c2} where the values are
        matplotlib colors.
    aspect : int
        the width to height ratio for each rectangle.
    sort : one of {'descending', 'ascending', None}
    title : str
    kwargs : dict
        matplotlib.axes.bar kwargs

    ax : matplotlib axes

    if ax is None:
        fig, ax = plt.subplots()

    # setup the axes
    dfn = pd.isnull(df)

    if sort in ('ascending', 'descending'):
        counts = dfn.sum()
        sort_dict = {'ascending': True, 'descending': False}
        dfn = dfn[counts.index]

    ny = len(df)
    nx = len(df.columns)
    # each column is a stacked bar made up of ny patches.
    xgrid = np.tile(np.arange(len(df.columns)), (ny, 1)).T
    ygrid = np.tile(np.arange(ny), (nx, 1))
    # xys is the lower left corner of each patch
    xys = (zip(x, y) for x, y in izip(xgrid, ygrid))

    if colors is None:
        colors = {True: '#EAF205', False: 'k'}

    widths = cycle([aspect])
    heights = cycle([1])

    for xy, width, height, col in izip(xys, widths, heights, dfn.columns):
        color_array = dfn[col].map(colors)

        rects = [Rectangle(xyc, width, height, **kwargs)
                 for xyc, c in zip(xy, color_array)]

        p_coll = collections.PatchCollection(rects, color=color_array,
                                             edgecolor=color_array, **kwargs)
        ax.add_collection(p_coll, autolim=False)

    # post plot aesthetics
    ax.set_xlim(0, nx)
    ax.set_ylim(0, ny)

    ax.set_xticks(.5 + np.arange(nx))  # center the ticks
    for t in ax.get_xticklabels():

    # remove tick lines
    ax.tick_params(axis='both', which='both', bottom='off', left='off',

    if title:
    return ax
like image 189
TomAugspurger Avatar answered Apr 06 '23 16:04