Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Is there a commonly used rational numbers library in Java?

Tags:

java

math

I'm looking for a Java library which represents fractions (rational numbers). For example, if I want to store the fraction 1/3 then it will not be saved as 0.33333 which will lose its accuracy.

Here is some of the functionality I expect finding in such a library:

  • getNumerator()
  • getDenominator()
  • add(Rational r1, Rational r2), subtract(Rational r1, Rational r2), multiply(Rational r1, Rational r2), divide(Rational r1, Rational r2)
  • isProper()
  • getCommonDenominator(Collection<Rational> rationals)
  • getSimplified()

I can implement such a library by myself, though I was wondering whether something similar already exists.

EDIT: It would also be nice if the library implements (in addition to the above) some number theory algorithms, such as getEgyptianFractionsSum() etc.

like image 313
snakile Avatar asked Mar 26 '11 13:03

snakile


People also ask

How do you find a rational number in Java?

We have to generate a finite number of positive rational numbers to n i.e. we will find rational numbers between 1 to n. For this algorithm, we will generate random numbers where 1 <= p <= n and 1 <= q <= n. Input : 3 Output : 1, ½ , ⅓ , 2 , ⅔ , 3/2 , 3 .

What are some common uses for rational numbers?

Distance to be run, time taken to run the distance, number of participants in a race, coming first or second or third, number of heart beats you take every minute etc., are all rational numbers.

What are the 4 types of rational numbers?

Natural numbers, whole numbers, integers, fractions of integers, and terminating decimals are rational numbers.

What is rational number in programming?

As all the numbers with a non zero denominator which can be written in p/q form is a rational number. A rational number is a ratio of two integers which can be written in the form of p/q where q is not equal to zero.


4 Answers

Does Apache Commons Math suit you?

like image 56
Petar Minchev Avatar answered Oct 12 '22 20:10

Petar Minchev


The JScience library includes the class org.jscience.mathematics.number.Rational. In addition to the usual factories, accessors and operations, one can construct other useful entities, including Polynomial<Rational>, Vector<Rational> and Matrix<Rational>.

As an example, a function to obtain the lowest common denominator of a collection of fractions might look like this:

private static LargeInteger lcd(Collection<Rational> fractions) {
    Rational sum = Rational.ZERO;
    for (Rational rational : fractions) {
        sum = sum.plus(rational);
    }
    return sum.getDivisor();
}

The following statement prints 6:

System.out.println(lcd(Arrays.asList(
    Rational.valueOf(1, 2), Rational.valueOf(1, 3))));
like image 30
trashgod Avatar answered Oct 12 '22 19:10

trashgod


Edit from Future: Please use Apache Commons or any other supported library. This was just a sample demonstration.

I implemented a small class that can be used for that purposes, maybe it can be useful for you as well, use with caution.

import java.util.ArrayList;

public class RationalNumber {

    /**
     *
     * @author Suat KARAKUSOGLU
     * @email  [email protected]
     * This class has 2 kind of constructors
     * 1. is RationalNumber a=new RationalNumber("3.3");
     *       RationalNumber a=new RationalNumber("-3.3");
     * With this constructor one can enter the decimal number and also specify whether negative or not
     *
     * 2. is RationalNumber a=new RationalNumber(3,5);
     * With this constructor the first value is nominator and second one is denominator.
     *
     * The advantage side of this class is, it prevents the fractional errors while dividing
     * RationalNumber keeps all denominator and nominator values as it is and when the real value is
     * needed, the calculation occurs at that time.
     *
     * Supports multiply,divide,add,subtract operations on RationalNumber classes.
     *
     */


    /*
     * Simple Usage:
     *
     * RationalNumber a=new RationalNumber("3.3");
     * RationalNumber b=new RationalNumber("4.5");
     * System.out.println("a ="+a.getStringValue());
     * System.out.println("b ="+b.getStringValue());
     * System.out.println("a-b ="+a.subtract(b).getStringValue());
     * System.out.println("a ="+a.getStringValue());
     * System.out.println("b ="+b.getStringValue());
     * RationalNumber k=a.divide(b);
     * System.out.println("a/b="+k.getStringValue());
     * System.out.println("a/b="+k.getDoubleValue());
     *
     * System out results:
     *
     * a =33/10
     * b =9/2
     * a-b =-6/5
     * a =33/10
     * b =9/2
     * a/b=11/15
     * a/b=0.7333333333333333
     *
     */

    public ArrayList<Long> nominators = new ArrayList<Long>();
    public ArrayList<Long> denominators = new ArrayList<Long>();

    public RationalNumber(String rationalNumberStringValue) {
        this(parseRationalNumberStringValue(rationalNumberStringValue)[0],
                parseRationalNumberStringValue(rationalNumberStringValue)[1]);

    }

    private static Long[] parseRationalNumberStringValue(
            String rationalNumberStringValue) {

        boolean positive = true;
        if (rationalNumberStringValue.charAt(0) == '-') {
            positive = false;
            rationalNumberStringValue = rationalNumberStringValue.substring(1);
        }

        // 0. index is keeping nominator
        // 1. index is keeping denominator
        Long[] nominatorDenominator = new Long[2];
        nominatorDenominator[0] = 1l;
        nominatorDenominator[1] = 1l;

        String[] splittedNumberArr = rationalNumberStringValue.split("\\.");
        String denominatorStr = splittedNumberArr[1];

        for (int i = 0; i < denominatorStr.length(); i++) {
            nominatorDenominator[1] *= 10;
        }

        rationalNumberStringValue = removeCharAt(rationalNumberStringValue,
                rationalNumberStringValue.indexOf('.'));
        nominatorDenominator[0] = Long.valueOf(rationalNumberStringValue);
        if (!positive) {
            nominatorDenominator[0] *= -1;
        }
        return nominatorDenominator;

    }

    public static String removeCharAt(String s, int pos) {
        return s.substring(0, pos) + s.substring(pos + 1);
    }

    public RationalNumber(Integer nominator, Integer denominator) {

        this((long) nominator, (long) denominator);

    }

    public RationalNumber(Long nominator, Long denominator) {

        nominators.add(nominator);
        denominators.add(denominator);
        simplify();

    }

    public RationalNumber(ArrayList<Long> nominatorList,
            ArrayList<Long> denominatorList) {

        nominators.addAll(nominatorList);
        denominators.addAll(denominatorList);
        simplify();

    }

    public String getStringValue() {
        return getMultipliedValue(this.nominators) + "/"
                + getMultipliedValue(this.denominators);
    }

    public double getDoubleValue() {
        return (double) getMultipliedValue(this.nominators)
                / (double) getMultipliedValue(this.denominators);
    }

    public RationalNumber multiply(RationalNumber rationalNumberToMultiply) {

        RationalNumber mulResult = new RationalNumber(
                rationalNumberToMultiply.nominators,
                rationalNumberToMultiply.denominators);
        mulResult.nominators.addAll(this.nominators);
        mulResult.denominators.addAll(this.denominators);

        return RationalNumber.simplifyRationalNumber(mulResult);
    }

    public RationalNumber divide(RationalNumber rationalNumberToDivide) {

        RationalNumber divideResult = new RationalNumber(
                rationalNumberToDivide.nominators,
                rationalNumberToDivide.denominators);

        // division means multiplication with reverse values
        ArrayList<Long> tempLongList = divideResult.nominators;
        divideResult.nominators = divideResult.denominators;
        divideResult.denominators = tempLongList;

        return this.multiply(divideResult);

    }

    public RationalNumber add(RationalNumber rationalNumberToAdd) {

        rationalNumberToAdd = RationalNumber
                .simplifyRationalNumber(rationalNumberToAdd);

        return new RationalNumber(
                (getMultipliedValue(this.nominators) * getMultipliedValue(rationalNumberToAdd.denominators))
                        + (getMultipliedValue(this.denominators) * getMultipliedValue(rationalNumberToAdd.nominators)),
                (getMultipliedValue(this.denominators) * getMultipliedValue(rationalNumberToAdd.denominators)));

    }

    public RationalNumber subtract(RationalNumber rationalNumberToSubtract) {

        rationalNumberToSubtract = RationalNumber
                .simplifyRationalNumber(rationalNumberToSubtract);

        RationalNumber subtractTempRational = new RationalNumber(
                rationalNumberToSubtract.nominators,
                rationalNumberToSubtract.denominators);

        // Multiply one of its nominators negative value
        subtractTempRational.nominators.set(0,
                (subtractTempRational.nominators.get(0) * -1));

        // add with its negative value
        return this.add(subtractTempRational);

    }

    private long getMultipliedValue(ArrayList<Long> longList) {
        Long mulResult = 1l;
        for (Long tempLong : longList) {
            mulResult *= tempLong;
        }
        return mulResult;
    }

    // simplifies original rationalnumber
    public void simplify() {
        long tempGcd = 1;
        long iValue = 1;
        long jValue = 1;
        for (int i = 0; i < this.nominators.size(); i++) {
            iValue = this.nominators.get(i);
            for (int j = 0; j < this.denominators.size(); j++) {
                jValue = this.denominators.get(j);
                tempGcd = gcd(iValue, jValue);
                this.nominators.set(i, iValue / tempGcd);
                this.denominators.set(j, jValue / tempGcd);
            }
        }
    }

    public static RationalNumber simplifyRationalNumber(
            RationalNumber rationalNumberToSimplify) {
        long tempGcd = 1;
        long iValue = 1;
        long jValue = 1;
        for (int i = 0; i < rationalNumberToSimplify.nominators.size(); i++) {
            for (int j = 0; j < rationalNumberToSimplify.denominators.size(); j++) {
                iValue = rationalNumberToSimplify.nominators.get(i);
                jValue = rationalNumberToSimplify.denominators.get(j);
                tempGcd = gcd(iValue, jValue);
                rationalNumberToSimplify.nominators.set(i, iValue / tempGcd);
                rationalNumberToSimplify.denominators.set(j, jValue / tempGcd);
            }
        }
        return rationalNumberToSimplify;
    }

    // Euclidean algorithm to find greatest common divisor
    public static long gcd(long a, long b) {

        a = Math.abs(a);
        b = Math.abs(b);

        if (a < b) {
            long temp = a;
            a = b;
            b = temp;
        }

        if (b == 0)
            return a;
        else
            return gcd(b, a % b);
    }

    public RationalNumber add(int integerToAdd) {

        RationalNumber tempRationalNumber=new RationalNumber(integerToAdd,1);
        return this.add(tempRationalNumber);
    }
    public RationalNumber subtract(int integerToSubtract) {

        RationalNumber tempRationalNumber=new RationalNumber(integerToSubtract,1);
        return this.subtract(tempRationalNumber);
    }
    public RationalNumber multiply(int integerToMultiply) {

        RationalNumber tempRationalNumber=new RationalNumber(integerToMultiply,1);
        return this.multiply(tempRationalNumber);
    }
    public RationalNumber divide(int integerToDivide) {

        RationalNumber tempRationalNumber=new RationalNumber(integerToDivide,1);
        return this.divide(tempRationalNumber);
    }



}
like image 2
Suat KARAKUSOGLU Avatar answered Oct 12 '22 19:10

Suat KARAKUSOGLU


I'm not sure how commonly used it is, but the apfloat packages (Java and C++) contain a class for rational arithmetic.

like image 1
hardmath Avatar answered Oct 12 '22 20:10

hardmath