When I use:
training_ds = tf.data.Dataset.from_generator(SomeTrainingDirectoryIterator, (tf.float32, tf.float32))
I expect for it to return a Tensorflow Dataset, but instead, training_ds is a DatasetV1Adapter object. Are they essentially the same thing? If not could I convert the DatasetV1Adapter to a Tf.Data.Dataset object?
Also, what is the best way to view loop over and view my dataset? If I were to call:
def show_batch(dataset):
for batch, head in dataset.take(1):
for labels, value in batch.items():
print("{:20s}: {}".format(labels, value.numpy()))
With training_ds as my dataset, I am thrown this error:
AttributeError: 'tensorflow.python.framework.ops.EagerTensor' object has no attribute 'items'
UPDATE: I upgraded my TensorFlow version from 1.14 to 2.0. and now the Dataset is of a FlatMapDataset. But this is still not my expected return object, why am I not being returned a regular tf.data.Dataset?
If you're using Tensorflow 2.0 (or below) from_generator
will give you DatasetV1Adapter
. For the Tensorflow version greater than 2.0 from_generator
will give you FlatMapDataset
.
The error you are facing is not related to the type of dataset from_generator
returns, but with the way you are printing the dataset. batch.items()
works if the from_generator
is generating the data of <class 'dict'>
type.
Example 1 - Here I am using from_generator
to create <class 'tuple'>
type data. So If I print using batch.items()
, then it throws the error you are facing. You can simply use list(dataset.as_numpy_iterator())
to print the dataset OR dataset.take(1).as_numpy_iterator()
to print required number of records, here as it is take(1)
, it prints just one record. Have added print statements in the code to explain better. You can find details in the Output.
import tensorflow as tf
print(tf.__version__)
import itertools
def gen():
for i in itertools.count(1):
yield (i, [1] * i)
dataset = tf.data.Dataset.from_generator(
gen,
(tf.int64, tf.int64),
(tf.TensorShape([]), tf.TensorShape([None])))
print("tf.data.Dataset type is:",dataset,"\n")
for batch in dataset.take(1):
print("My type is of:",type(batch),"\n")
# This Works
print("Lets print just the first row in dataset :","\n",list(dataset.take(1).as_numpy_iterator()),"\n")
# This won't work because we have not created dict
print("Lets print using the batch.items() :")
for batch in dataset.take(1):
for m1,m2 in batch.items():
print("{:20s}: {}".format(m1, m2))
Output -
2.2.0
tf.data.Dataset type is: <FlatMapDataset shapes: ((), (None,)), types: (tf.int64, tf.int64)>
My type is of: <class 'tuple'>
Lets print just the first row in dataset :
[(1, array([1]))]
Lets print using the batch.items() :
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-11-27bbc2c21d24> in <module>()
24 print("Lets print using the batch.items() :")
25 for batch in dataset.take(1):
---> 26 for m1,m2 in batch.items():
27 print("{:20s}: {}".format(m1, m2))
AttributeError: 'tuple' object has no attribute 'items'
Example 2 - Here I am using from_generator
to create <class 'dict'>
type data. So If I print using batch.items()
, then it works without any issues. Being said that, you can simply use list(dataset.as_numpy_iterator())
to print the dataset. Have added print statements in the code to explain better. You can find details in the Output.
import tensorflow as tf
N = 100
# dictionary of arrays:
metadata = {'m1': tf.zeros(shape=(N,2)), 'm2': tf.ones(shape=(N,3,5))}
num_samples = N
def meta_dict_gen():
for i in range(num_samples):
ls = {}
for key, val in metadata.items():
ls[key] = val[i]
yield ls
dataset = tf.data.Dataset.from_generator(
meta_dict_gen,
output_types={k: tf.float32 for k in metadata},
output_shapes={'m1': (2,), 'm2': (3, 5)})
print("tf.data.Dataset type is:",dataset,"\n")
for batch in dataset.take(1):
print("My type is of:",type(batch),"\n")
print("Lets print just the first row in dataset :","\n",list(dataset.take(1).as_numpy_iterator()),"\n")
print("Lets print using the batch.items() :")
for batch in dataset.take(1):
for m1, m2 in batch.items():
print("{:2s}: {}".format(m1, m2))
Output -
tf.data.Dataset type is: <FlatMapDataset shapes: {m1: (2,), m2: (3, 5)}, types: {m1: tf.float32, m2: tf.float32}>
My type is of: <class 'dict'>
Lets print just the first row in dataset :
[{'m1': array([0., 0.], dtype=float32), 'm2': array([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]], dtype=float32)}]
Lets print using the batch.items() :
m1: [0. 0.]
m2: [[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]
Hope this answers your question. Happy Learning.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With