I want to take an image and invert the colors in iOS.
Open Microsoft Paint. Go to “File > Open” or simply press Ctrl + O keys to open an image in Paint. Press Ctrl + A keys to select the entire image. Now, right-click on the image and select the Invert color option.
To expand on quixoto's answer and because I have relevant source code from a project of my own, if you were to need to drop to on-CPU pixel manipulation then the following, which I've added exposition to, should do the trick:
@implementation UIImage (NegativeImage) - (UIImage *)negativeImage { // get width and height as integers, since we'll be using them as // array subscripts, etc, and this'll save a whole lot of casting CGSize size = self.size; int width = size.width; int height = size.height; // Create a suitable RGB+alpha bitmap context in BGRA colour space CGColorSpaceRef colourSpace = CGColorSpaceCreateDeviceRGB(); unsigned char *memoryPool = (unsigned char *)calloc(width*height*4, 1); CGContextRef context = CGBitmapContextCreate(memoryPool, width, height, 8, width * 4, colourSpace, kCGBitmapByteOrder32Big | kCGImageAlphaPremultipliedLast); CGColorSpaceRelease(colourSpace); // draw the current image to the newly created context CGContextDrawImage(context, CGRectMake(0, 0, width, height), [self CGImage]); // run through every pixel, a scan line at a time... for(int y = 0; y < height; y++) { // get a pointer to the start of this scan line unsigned char *linePointer = &memoryPool[y * width * 4]; // step through the pixels one by one... for(int x = 0; x < width; x++) { // get RGB values. We're dealing with premultiplied alpha // here, so we need to divide by the alpha channel (if it // isn't zero, of course) to get uninflected RGB. We // multiply by 255 to keep precision while still using // integers int r, g, b; if(linePointer[3]) { r = linePointer[0] * 255 / linePointer[3]; g = linePointer[1] * 255 / linePointer[3]; b = linePointer[2] * 255 / linePointer[3]; } else r = g = b = 0; // perform the colour inversion r = 255 - r; g = 255 - g; b = 255 - b; // multiply by alpha again, divide by 255 to undo the // scaling before, store the new values and advance // the pointer we're reading pixel data from linePointer[0] = r * linePointer[3] / 255; linePointer[1] = g * linePointer[3] / 255; linePointer[2] = b * linePointer[3] / 255; linePointer += 4; } } // get a CG image from the context, wrap that into a // UIImage CGImageRef cgImage = CGBitmapContextCreateImage(context); UIImage *returnImage = [UIImage imageWithCGImage:cgImage]; // clean up CGImageRelease(cgImage); CGContextRelease(context); free(memoryPool); // and return return returnImage; } @end
So that adds a category method to UIImage that:
With CoreImage:
#import <CoreImage/CoreImage.h> @implementation UIImage (ColorInverse) + (UIImage *)inverseColor:(UIImage *)image { CIImage *coreImage = [CIImage imageWithCGImage:image.CGImage]; CIFilter *filter = [CIFilter filterWithName:@"CIColorInvert"]; [filter setValue:coreImage forKey:kCIInputImageKey]; CIImage *result = [filter valueForKey:kCIOutputImageKey]; return [UIImage imageWithCIImage:result]; } @end
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With