Is dividing the work into 5 functions as opposed to one big function more memory efficient in C since at a given time there are fewer variables in memory, as the stack-frame gets deallocated more often? Does it depend on the compiler, and optimization? if so in what compilers is it faster?
Answer given there are a lot of local variables and the stack frames comes from a centralized main and not created on the top of each other.
I know other advantages of breaking out the function into smaller functions. Please answer this question, only in respect to memory usage.
It might reduce "high water mark" of stack usage for your program, and if so that might reduce the overall memory requirement of the program.
Yes, it depends on optimization. If the optimizer inlines the function calls, you might well find that all the variables of all the functions inlined are wrapped into one big stack frame. Any compiler worth using is capable of inlining[*], so the fact that it can happen doesn't depend on compiler. Exactly when it happens, will differ.
If your local variables are small, though, then it's fairly rare for your program to use more stack than has been automatically allocated to you at startup. Unless you go past what you're given initially, how much you use makes no difference to overall memory requirements.
If you're putting great big structures on the stack (multiple kilobytes), or if you're on a machine where a kilobyte is a lot of memory, then it might make a difference to overall memory usage. So, if by "a lot of local variables" you mean few dozen int
s and pointers then no, nothing you do makes any significant difference. If by "a lot of local variables" you mean a few dozen 10k buffers, or if your function recurses very deep so that you have hundreds of levels of your few dozen int
s, then it's a least possible it could make a difference, depending on the OS and configuration.
The model that stack and heap grow towards each other through general RAM, and the free memory in the middle can be used equally by either one of them, is obsolete. With the exception of a very few, very restricted systems, memory models are not designed that way any more. In modern OSes, we have so-called "virtual memory", and stack space is allocated to your program one page at a time. Most of them automatically allocate more pages of stack as it is used, up to a configured limit that's usually very large. A few don't automatically extend stack (Symbian last I used it, which was some years ago, didn't, although arguably Symbian is not a "modern" OS). If you're using an embedded OS, check what the manual says about stack.
Either way, the only thing that affects total memory use is how many pages of stack you need at any one time. If your system automatically extends stack, you won't even notice how much you're using. If it doesn't, you'll need to ensure that the program is given sufficient stack for its high-water mark, and that's when you might notice excessive stack use.
In short, this is one of those things that in theory makes a difference, but in practice that difference is almost always insignificant. It only matters if your program uses massive amounts of stack relative to the resources of the environment it runs in.
[*] People programming in C for PICs or something, using a C compiler that is basically a non-optimizing assembler, are allowed to be offended that I've called their compiler "not worth using". The stack on such devices is so different from "typical" systems that the answer is different anyway.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With