Edit: this is not asking how to do std::make_heap
the O(n) way, but rather whether this particular implementation is indeed O(n)
The textbook way of building a heap in O(n) time is to successively build the heap from bottom up. But the implementation of std::make_heap
on my Mac machine in libc++ is
template <class _RandomAccessIterator, class _Compare>
inline _LIBCPP_INLINE_VISIBILITY
void
make_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp)
{
#ifdef _LIBCPP_DEBUG
typedef typename add_lvalue_reference<__debug_less<_Compare> >::type _Comp_ref;
__debug_less<_Compare> __c(__comp);
__make_heap<_Comp_ref>(__first, __last, __c);
#else // _LIBCPP_DEBUG
typedef typename add_lvalue_reference<_Compare>::type _Comp_ref;
__make_heap<_Comp_ref>(__first, __last, __comp);
#endif // _LIBCPP_DEBUG
}
where __make_heap
is defined as
template <class _Compare, class _RandomAccessIterator>
void
__make_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::difference_type difference_type;
difference_type __n = __last - __first;
if (__n > 1)
{
__last = __first;
++__last;
for (difference_type __i = 1; __i < __n;)
__push_heap_back<_Compare>(__first, ++__last, __comp, ++__i);
}
}
template <class _Compare, class _RandomAccessIterator>
void
__push_heap_back(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp,
typename iterator_traits<_RandomAccessIterator>::difference_type __len)
{
typedef typename iterator_traits<_RandomAccessIterator>::difference_type difference_type;
typedef typename iterator_traits<_RandomAccessIterator>::value_type value_type;
if (__len > 1)
{
__len = (__len - 2) / 2;
_RandomAccessIterator __ptr = __first + __len;
if (__comp(*__ptr, *--__last))
{
value_type __t(_VSTD::move(*__last));
do
{
*__last = _VSTD::move(*__ptr);
__last = __ptr;
if (__len == 0)
break;
__len = (__len - 1) / 2;
__ptr = __first + __len;
} while (__comp(*__ptr, __t));
*__last = _VSTD::move(__t);
}
}
}
Isn't this simply iteratively inserting into the heap, thus with time complexity O(n log n)? Am I right that this is a bug?
This is indeed a non-conforming O(n log n) implementation.
Comparing it to the "sift up" version of heapify from the Wikipedia article on heapsort shows that it's essentially the same algorithm. Testing it on increasing integer sequences (the worst case) gives running times that nicely fit the n log n
curve, and the number of comparisons needed exceeds the standard-mandated 3n
figure even for small n
.
Though on the average the algorithm performs well within the 3n
limit, the standard mandates worst-case performance, not the average one.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With