In my limited experience, I've been told repeatedly that you should not pass around entities to the front end or via rest, but instead to use a DTO.
Doesn't Spring Data Rest do exactly this? I've looked briefly into projections, but those seem to just limit the data that is being returned, and still expecting an entity as a parameter to a post method to save to the database. Am I missing something here, or am I (and my coworkers) incorrect in that you should never pass around and entity?
A DTO is helpful whenever you need to group values in ad hoc structures for passing data around. From a pure design perspective, DTOs are a solution really close to perfection. DTOs help to further decouple presentation from the service layer and the domain model.
Real-world applications should avoid using Spring Data REST because the entities are exposed as RESTful Services. The two most critical considerations in designing a RESTful service are the domain model and the consumers.
Spring Data REST is a framework that builds itself on top of the applications data repositories and expose those repositories in the form of REST endpoints. In order to make it easier for the clients to discover the HTTP access points exposed by the repositories, Spring Data REST uses hypermedia driven endpoints.
As stated in the general design considerations, in most cases the DTO pattern should be implemented using an API Resource class representing the public data model exposed through the API and a custom data provider. In such cases, the class marked with #[ApiResource] will act as a DTO.
No. DTOs are just one means to decouple the server side domain model from the representation exposed in HTTP resources. You can also use other means of decoupling, which is what Spring Data REST does.
Yes, Spring Data REST inspects the domain model you have on the server side to reason about the way the representations for the resources it exposes will look like. However it applies a couple of crucial concepts that mitigate the problems a naive exposure of domain objects would bring.
The fundamental problem with the naive "I throw my domain objects in front of Jackson" is that from the plain entity model, it's very hard to reason about reasonable representation boundaries. Especially entity models derived from database tables have the habit to connect virtually everything to everything. This stems from the fact that important domain concepts like aggregates are simply not present in most persistence technologies (read: especially in relational databases).
However, I'd argue that in this case the "Don't expose your domain model" is more acting on the symptoms of that than the core of the problem. If you design your domain model properly there's a huge overlap between what's beneficial in the domain model and what a good representation looks like to effectively drive that model through state changes. A couple of simple rules:
Spring Data REST does quite a few things to actually transfer those entity relationships into the proper mechanisms on the HTTP level: links in general and more importantly links to dedicated resources managing those relationships. It does so by inspecting the repositories declared for entities and basically replaces an otherwise necessary inlining of the related entity with a link to an association resource that allows you to manage that relationship explicitly.
That approach usually plays nicely with the consistency guarantees described by DDD aggregates on the HTTP level. PUT
requests don't span multiple aggregates by default, which is a good thing as it implies a scope of consistency of the resource matching the concepts of your domain.
You can introduce as many DTOs for your domain objects as you like. In most of the cases, the fields captured in the domain object will reflect into the representation in some way. I have yet to see the entity Customer
containing a firstname
, lastname
and emailAddress
property, and those being completely irrelevant in the representation.
The introduction of DTOs doesn't guarantee a decoupling by no means. I've seen way too many projects where they where introduced for cargo-culting reasons, simply duplicated all fields of the entity backing them and by that just caused additional effort because every new field had to be added to the DTOs as well. But hey, decoupling! Not. ¯\_(ツ)_/¯
That said, there are of course situations where you'd want to slightly tweak the representation of those properties, especially if you use strongly typed value objects for e.g. an EmailAddress
(good!) but still want to render this as a plain String
in JSON. But by no means is that a problem: Spring Data REST uses Jackson under the covers which offers you a wide variety of means to tweak the representation — annotations, mixins to keep the annotations outside your domain types, custom serializers etc. So there is a mapping layer in between.
Not using DTOs by default is not a bad thing per se. Just imagine the outcry by users about the amount of boilerplate necessary if we required DTOs to be written for everything! A DTO is just one means to an end. If that end can be achieved in a different way (and it usually can), why insist on DTOs?
Continuing on the customization efforts it's worth noticing that Spring Data REST exists to cover exactly the parts of the API, that just follow the basic REST API implementation patterns it implements. And that functionality is in place to give you more time to think about
Here's a slide from the talk I gave at SpringOne Platform 2016 that summarizes the situation.
The complete slide deck can be found here. There's also a recording of the talk available on InfoQ.
Spring Data REST exists for you to be able to focus on the underlined circles. By no means we think you can build a great really API solely by switching Spring Data REST on. We just want to reduce the amount of boilerplate for you to have more time to think about the interesting bits.
Just like Spring Data in general reduces the amount of boilerplate code to be written for standard persistence operations. Nobody would argue you can actually build a real world app from only CRUD operations. But taking the effort out of the boring bits, we allow you to think more intensively about the real domain challenges (and you should actually do that :)).
You can be very selective in overriding certain resources to completely take control of their behavior, including manually mapping the domain types to DTOs if you want. You can also place custom functionality next to what Spring Data REST provides and just hook the two together. Be selective about what you use.
You can find a slightly advanced example of what I described in Spring RESTBucks, a Spring (Data REST) based implementation of the RESTBucks example in the RESTful Web Services book. It uses Spring Data REST to manage Order
instances but tweaks its handling to introduce custom requirements and completely implement the payment part of the story manually.
Spring Data REST enables a very fast way to prototype and create a REST API based on a database structure. We're talking about minutes vs days, when comparing with other programming technologies.
The price you pay for that, is that your REST API is tightly coupled to your database structure. Sometimes, that's a big problem. Sometimes it's not. It depends basically on the quality of your database design and your ability to change it to suit the API user needs.
In short, I consider Spring Data REST as a tool that can save you a lot of time under certain special circumstances. Not as a silver bullet that can be applied to any problem.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With