Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

is it possible to do fuzzy match merge with python pandas?

Tags:

python

pandas

I have two DataFrames which I want to merge based on a column. However, due to alternate spellings, different number of spaces, absence/presence of diacritical marks, I would like to be able to merge as long as they are similar to one another.

Any similarity algorithm will do (soundex, Levenshtein, difflib's).

Say one DataFrame has the following data:

df1 = DataFrame([[1],[2],[3],[4],[5]], index=['one','two','three','four','five'], columns=['number'])

       number
one         1
two         2
three       3
four        4
five        5

df2 = DataFrame([['a'],['b'],['c'],['d'],['e']], index=['one','too','three','fours','five'], columns=['letter'])

      letter
one        a
too        b
three      c
fours      d
five       e

Then I want to get the resulting DataFrame

       number letter
one         1      a
two         2      b
three       3      c
four        4      d
five        5      e
like image 602
pocketfullofcheese Avatar asked Nov 29 '12 23:11

pocketfullofcheese


People also ask

How do you get the fuzzy match in pandas?

Often you may want to join together two datasets in pandas based on imperfectly matching strings. This is called fuzzy matching. The easiest way to perform fuzzy matching in pandas is to use the get_close_matches() function from the difflib package.

What is fuzzy matching python?

Fuzzy String Matching, also known as Approximate String Matching, is the process of finding strings that approximately match a pattern. The process has various applications such as spell-checking, DNA analysis and detection, spam detection, plagiarism detection e.t.c. Introduction to Fuzzywuzzy in Python.

Can you merge objects pandas?

Pandas DataFrame merge() function is used to merge two DataFrame objects with a database-style join operation. The joining is performed on columns or indexes. If the joining is done on columns, indexes are ignored. This function returns a new DataFrame and the source DataFrame objects are unchanged.


2 Answers

Similar to @locojay suggestion, you can apply difflib's get_close_matches to df2's index and then apply a join:

In [23]: import difflib 

In [24]: difflib.get_close_matches
Out[24]: <function difflib.get_close_matches>

In [25]: df2.index = df2.index.map(lambda x: difflib.get_close_matches(x, df1.index)[0])

In [26]: df2
Out[26]: 
      letter
one        a
two        b
three      c
four       d
five       e

In [31]: df1.join(df2)
Out[31]: 
       number letter
one         1      a
two         2      b
three       3      c
four        4      d
five        5      e

.

If these were columns, in the same vein you could apply to the column then merge:

df1 = DataFrame([[1,'one'],[2,'two'],[3,'three'],[4,'four'],[5,'five']], columns=['number', 'name'])
df2 = DataFrame([['a','one'],['b','too'],['c','three'],['d','fours'],['e','five']], columns=['letter', 'name'])

df2['name'] = df2['name'].apply(lambda x: difflib.get_close_matches(x, df1['name'])[0])
df1.merge(df2)
like image 65
Andy Hayden Avatar answered Oct 24 '22 12:10

Andy Hayden


Using fuzzywuzzy

Since there are no examples with the fuzzywuzzy package, here's a function I wrote which will return all matches based on a threshold you can set as a user:


Example datframe

df1 = pd.DataFrame({'Key':['Apple', 'Banana', 'Orange', 'Strawberry']})
df2 = pd.DataFrame({'Key':['Aple', 'Mango', 'Orag', 'Straw', 'Bannanna', 'Berry']})

# df1
          Key
0       Apple
1      Banana
2      Orange
3  Strawberry

# df2
        Key
0      Aple
1     Mango
2      Orag
3     Straw
4  Bannanna
5     Berry

Function for fuzzy matching

def fuzzy_merge(df_1, df_2, key1, key2, threshold=90, limit=2):
    """
    :param df_1: the left table to join
    :param df_2: the right table to join
    :param key1: key column of the left table
    :param key2: key column of the right table
    :param threshold: how close the matches should be to return a match, based on Levenshtein distance
    :param limit: the amount of matches that will get returned, these are sorted high to low
    :return: dataframe with boths keys and matches
    """
    s = df_2[key2].tolist()
    
    m = df_1[key1].apply(lambda x: process.extract(x, s, limit=limit))    
    df_1['matches'] = m
    
    m2 = df_1['matches'].apply(lambda x: ', '.join([i[0] for i in x if i[1] >= threshold]))
    df_1['matches'] = m2
    
    return df_1

Using our function on the dataframes: #1

from fuzzywuzzy import fuzz
from fuzzywuzzy import process

fuzzy_merge(df1, df2, 'Key', 'Key', threshold=80)

          Key       matches
0       Apple          Aple
1      Banana      Bannanna
2      Orange          Orag
3  Strawberry  Straw, Berry

Using our function on the dataframes: #2

df1 = pd.DataFrame({'Col1':['Microsoft', 'Google', 'Amazon', 'IBM']})
df2 = pd.DataFrame({'Col2':['Mcrsoft', 'gogle', 'Amason', 'BIM']})

fuzzy_merge(df1, df2, 'Col1', 'Col2', 80)

        Col1  matches
0  Microsoft  Mcrsoft
1     Google    gogle
2     Amazon   Amason
3        IBM         

Installation:

Pip

pip install fuzzywuzzy

Anaconda

conda install -c conda-forge fuzzywuzzy
like image 37
Erfan Avatar answered Oct 24 '22 12:10

Erfan