When trying to come up with an answer to this question, I wrote this little test-program:
#include <iostream>
#include <fstream>
#include <vector>
#include <iterator>
#include <algorithm>
void writeFile() {
int data[] = {0,1,2,3,4,5,6,7,8,9,1000};
std::basic_ofstream<int> file("test.data", std::ios::binary);
std::copy(data, data+11, std::ostreambuf_iterator<int>(file));
}
void readFile() {
std::basic_ifstream<int> file("test.data", std::ios::binary);
std::vector<int> data(std::istreambuf_iterator<int>(file),
(std::istreambuf_iterator<int>()));
std::copy(data.begin(), data.end(),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
}
int main()
{
writeFile();
readFile();
return 0;
}
It works as expected, writing the data to the file, and after reading the file, it correctly prints:
0 1 2 3 4 5 6 7 8 9 1000
However, I am not sure if there are any pitfalls (endianess issues aside, you always have these when dealing with binary data)? Is this allowed?
It works as expected.
I'm not sure what you are expecting...
Is this allowed?
That's probably not portable. Streams relies on char_traits
and on facets which are defined in the standard only for char
and wchar_t
. An implementation can provides more, but my bet would be that you are relying on a minimal default implementation of those templates and not on a conscious implementation for int
. I'd not be surprised that a more in depth use would leads to problems.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With