I have the following class structure:
class InterfaceA
{
virtual void methodA =0;
}
class ClassA : public InterfaceA
{
void methodA();
}
class InterfaceB : public InterfaceA
{
virtual void methodB =0;
}
class ClassAB : public ClassA, public InterfaceB
{
void methodB();
}
Now the following code is not compilable:
int main()
{
InterfaceB* test = new ClassAB();
test->methodA();
}
The compiler says that the method methodA()
is virtual and not implemented. I thought that it is implemented in ClassA
(which implements the InterfaceA
).
Does anyone know where my fault is?
Interfaces can inherit from one or more interfaces. The derived interface inherits the members from its base interfaces. A class that implements a derived interface must implement all members in the derived interface, including all members of the derived interface's base interfaces.
C# allows the user to inherit one interface into another interface. When a class implements the inherited interface then it must provide the implementation of all the members that are defined within the interface inheritance chain.
But unlike classes, interfaces can actually inherit from multiple interfaces. This is done by listing the names of all interfaces to inherit from, separated by comma. A class implementing an interface which inherits from multiple interfaces must implement all methods from the interface and its parent interfaces.
Every type in C# directly or indirectly derives from the object class type. Eric Lippert says: Interface types, not being classes, are not derived from object.
That is because you have two copies of InterfaceA
. See this for a bigger explanation: https://isocpp.org/wiki/faq/multiple-inheritance (your situation is similar to 'the dreaded diamond').
You need to add the keyword virtual
when you inherit ClassA from InterfaceA. You also need to add virtual
when you inherit InterfaceB from InterfaceA.
Virtual inheritance, which Laura suggested, is, of course, the solution of the problem. But it doesn't end up in having only one InterfaceA. It has "side-effects" too, for ex. see https://isocpp.org/wiki/faq/multiple-inheritance#mi-delegate-to-sister. But if get used to it, it may come in handy.
If you don't want side effects, you may use template:
struct InterfaceA
{
virtual void methodA() = 0;
};
template<class IA>
struct ClassA : public IA //IA is expected to extend InterfaceA
{
void methodA() { 5+1;}
};
struct InterfaceB : public InterfaceA
{
virtual void methodB() = 0;
};
struct ClassAB
: public ClassA<InterfaceB>
{
void methodB() {}
};
int main()
{
InterfaceB* test = new ClassAB();
test->methodA();
}
So, we are having exactly one parent class.
But it looks more ugly when there is more than one "shared" class (InterfaceA is "shared", because it is on top of "dreaded diamond", see here https://isocpp.org/wiki/faq/multiple-inheritance as posted by Laura). See example (what will be, if ClassA implements interfaceC too):
struct InterfaceC
{
virtual void methodC() = 0;
};
struct InterfaceD : public InterfaceC
{
virtual void methodD() = 0;
};
template<class IA, class IC>
struct ClassA
: public IA //IA is expected to extend InterfaceA
, public IC //IC is expected to extend InterfaceC
{
void methodA() { 5+1;}
void methodC() { 1+2; }
};
struct InterfaceB : public InterfaceA
{
virtual void methodB() = 0;
};
struct ClassAB
: public ClassA<InterfaceB, InterfaceC> //we had to modify existing ClassAB!
{
void methodB() {}
};
struct ClassBD //new class, which needs ClassA to implement InterfaceD partially
: public ClassA<InterfaceB, InterfaceD>
{
void methodB() {}
void methodD() {}
};
The bad thing, that you needed to modify existing ClassAB. But you can write:
template<class IA, class IC = interfaceC>
struct ClassA
Then ClassAB stays unchanged:
struct ClassAB
: public ClassA<InterfaceB>
And you have default implementation for template parameter IC.
Which way to use is for you to decide. I prefer template, when it is simple to understand. It is quite difficult to get into habit, that B::incrementAndPrint() and C::incrementAndPrint() will print different values (not your example), see this:
class A
{
public:
void incrementAndPrint() { cout<<"A have "<<n<<endl; ++n; }
A() : n(0) {}
private:
int n;
};
class B
: public virtual A
{};
class C
: public virtual A
{};
class D
: public B
: public C
{
public:
void printContents()
{
B::incrementAndPrint();
C::incrementAndPrint();
}
};
int main()
{
D d;
d.printContents();
}
And the output:
A have 0
A have 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With