Since OpenMP 4.0, user-defined reduction is supported. So I defined the reduction on std::vector in C++ exactly from here. It works fine with GNU/5.4.0 and GNU/6.4.0, but it returns random values for the reduction with intel/2018.1.163.
This is the example:
#include <iostream>
#include <vector>
#include <algorithm>
#include "omp.h"
#pragma omp declare reduction(vec_double_plus : std::vector<double> : \
std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<double>())) \
initializer(omp_priv = omp_orig)
int main() {
omp_set_num_threads(4);
int size = 100;
std::vector<double> w(size,0);
#pragma omp parallel for reduction(vec_double_plus:w)
for (int i = 0; i < 4; ++i)
for (int j = 0; j < w.size(); ++j)
w[j] += 1;
for(auto i:w)
if(i != 4)
std::cout << i << std::endl;
return 0;
}
Each thread adds 1 to all w entries (its local w) and at the end all of them are added to together (reduction). The result for all w entries is 4 with GNU, but random with the intel compiler. Does anyone have any idea what is happening here?
This appears to be a bug in the Intel compiler, I can reliably reproduce it with a C example not involving vectors:
#include <stdio.h>
void my_sum_fun(int* outp, int* inp) {
printf("%d @ %p += %d @ %p\n", *outp, outp, *inp, inp);
*outp = *outp + *inp;
}
int my_init(int* orig) {
printf("orig: %d @ %p\n", *orig, orig);
return *orig;
}
#pragma omp declare reduction(my_sum : int : my_sum_fun(&omp_out, &omp_in) initializer(omp_priv = my_init(&omp_orig))
int main()
{
int s = 0;
#pragma omp parallel for reduction(my_sum : s)
for (int i = 0; i < 2; i++)
s+= 1;
printf("sum: %d\n", s);
}
Output:
orig: 0 @ 0x7ffee43ccc80
0 @ 0x7ffee43ccc80 += 1 @ 0x7ffee43cc780
orig: 1 @ 0x7ffee43ccc80
1 @ 0x7ffee43ccc80 += 2 @ 0x2b56d095ca80
sum: 3
It applies the reduction operation to the original variable before initializing the private copy from the original value. This leads to the wrong result.
You can manually add a barrier as a workaround:
#pragma omp parallel reduction(vec_double_plus : w)
{
#pragma omp for
for (int i = 0; i < 4; ++i)
for (int j = 0; j < w.size(); ++j)
w[j] += 1;
#pragma omp barrier
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With