Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Inputting an obscure file type into tensorflow

I am currently trying to train a neural network model on MRI scan images. The images are in a NIfTI (.nii) file format which I don't believe tensorflow or keras has the inherent ability to read. I have a python package that allows me to read these files in python, however I am having trouble figuring out how to interface this package with tensorflow. I first create a tf.data.Dataset object containing the paths to each of my MRI scans, and then I try to use the Dataset.map() function to read each of the files and create a dataset of image, label pairs. My problem is that the tf.data.Dataset object seems to store each filename in a Tensor rather than a string, but the function that can read the .nii filetype cannot read a Tensor. Is there a way to convert the filepath string tensors into readable strings to allow me to open the files? If not, is there a better way of creating the dataset?

like image 564
DivineLizard Avatar asked Feb 21 '20 08:02

DivineLizard


1 Answers

Specifying the code below, which was present in the Link specified by "agrits" in the comments section, for the benefit of the community.

# Creates a .tfrecord file from a directory of nifti images.
#   This assumes your niftis are soreted into subdirs by directory, and a regex
#   can be written to match a volume-filenames and label-filenames
#
# USAGE
#  python ./genTFrecord.py <data-dir> <input-vol-regex> <label-vol-regex>
# EXAMPLE:
#  python ./genTFrecord.py ./buckner40 'norm' 'aseg' buckner40.tfrecords
#
# Based off of this: 
#   http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/

# imports
import numpy as np
import tensorflow as tf
import nibabel as nib
import os, sys, re

def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def select_hipp(x):
    x[x != 17] = 0
    x[x == 17] = 1
    return x

def crop_brain(x):
    x = x[90:130,90:130,90:130] #should take volume zoomed in on hippocampus area
    return x

def preproc_brain(x):
    x = select_hipp(x)
    x = crop_brain(x)   
    return x

def listfiles(folder):
    for root, folders, files in os.walk(folder):
        for filename in folders + files:
            yield os.path.join(root, filename)

def gen_filename_pairs(data_dir, v_re, l_re):
    unfiltered_filelist=list(listfiles(data_dir))
    input_list = [item for item in unfiltered_filelist if re.search(v_re,item)]
    label_list = [item for item in unfiltered_filelist if re.search(l_re,item)]
    print("input_list size:    ", len(input_list))
    print("label_list size:    ", len(label_list))
    if len(input_list) != len(label_list):
        print("input_list size and label_list size don't match")
        raise Exception
    return zip(input_list, label_list)

# parse args
data_dir = sys.argv[1]
v_regex  = sys.argv[2]
l_regex  = sys.argv[3]
outfile  = sys.argv[4]
print("data_dir:   ", data_dir)
print("v_regex:    ", v_regex )
print("l_regex:    ", l_regex )
print("outfile:    ", outfile )

# Generate a list of (volume_filename, label_filename) tuples
filename_pairs = gen_filename_pairs(data_dir, v_regex, l_regex)

# To compare original to reconstructed images
original_images = []

writer = tf.python_io.TFRecordWriter(outfile)
for v_filename, l_filename in filename_pairs:

    print("Processing:")
    print("  volume: ", v_filename)
    print("  label:  ", l_filename) 

    # The volume, in nifti format   
    v_nii = nib.load(v_filename)
    # The volume, in numpy format
    v_np = v_nii.get_data().astype('int16')
    # The volume, in raw string format
    v_np = crop_brain(v_np)
    # The volume, in raw string format
    v_raw = v_np.tostring()

    # The label, in nifti format
    l_nii = nib.load(l_filename)
    # The label, in numpy format
    l_np = l_nii.get_data().astype('int16')
    # Preprocess the volume
    l_np = preproc_brain(l_np)
    # The label, in raw string format
    l_raw = l_np.tostring()

    # Dimensions
    x_dim = v_np.shape[0]
    y_dim = v_np.shape[1]
    z_dim = v_np.shape[2]
    print("DIMS: " + str(x_dim) + str(y_dim) + str(z_dim))

    # Put in the original images into array for future check for correctness
    # Uncomment to test (this is a memory hog)
    ########################################
    # original_images.append((v_np, l_np))

    data_point = tf.train.Example(features=tf.train.Features(feature={
        'image_raw': _bytes_feature(v_raw),
        'label_raw': _bytes_feature(l_raw)}))

    writer.write(data_point.SerializeToString())

writer.close()
like image 191
Tensorflow Support Avatar answered Sep 24 '22 00:09

Tensorflow Support