Lets say I have the following code in what we expect to become the next C++ standard:
int f(int x)
{
std::cout << x;
return x * x;
}
struct A
{
A(int x) : m_x(x) {}
int m_x;
};
struct B : A
{
using A::A;
B() : m_y(f(m_x)) {}
int m_y;
};
int main()
{
B(5);
}
Would this call the default constructor of B and print out 5 and set m_y = 25? Or will the default constructor of B not run, and leave m_y uninitialized?
And if the latter, what is the rationale behind not calling the B default constructor? It is quite clear that the A(int) B inherits only initialises A, and leaves B in an indeterminate state. Why would C++ choose undefined behaviour over simply calling the default constructor of B()? It largely defeats the purpose of the inheriting constructors feature.
Edit:
Perhaps this should be allowed:
using A::A : m_y(...) { std::cout << "constructing..." << std::endl; ...; }
using A::A;
implicitly declares B(int)
in the derived class. That is it.
The rest of your program should not work as you expect. Because you're invoking B(int)
with B(5)
, and that leaves m_y
uninitialized.
See this example from Bjarne Stroustrup's site:
struct B1 {
B1(int) { }
};
struct D1 : B1 {
using B1::B1; // implicitly declares D1(int)
int x;
};
void test()
{
D1 d(6); // Oops: d.x is not initialized
D1 e; // error: D1 has no default constructor
}
http://www2.research.att.com/~bs/C++0xFAQ.html#inheriting
Another example from the same link:
struct D1 : B1 {
using B1::B1; // implicitly declares D1(int)
int x{0}; // note: x is initialized
};
void test()
{
D1 d(6); // d.x is zero
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With