Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Index a NumPy array row-wise [duplicate]

Say I have a NumPy array:

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])

and an array of indexes that I want to select for each row:

>>> ixs = np.array([[1, 3], [0, 1], [1, 2]])
>>> ixs
array([[1, 3],
       [0, 1],
       [1, 2]])

How do I index the array X so that for every row in X I select the two indices specified in ixs?

So for this case, I want to select element 1 and 3 for the first row, element 0 and 1 for the second row, and so on. The output should be:

array([[2, 4],
       [5, 6],
       [10, 11]])

A slow solution would be something like this:

output = np.array([row[ix] for row, ix in zip(X, ixs)])

however this can get kinda slow for extremely long arrays. Is there a faster way to do this without a loop using NumPy?

EDIT: Some very approximate speed tests on a 2.5K * 1M array with 2K wide ixs (10GB):

np.array([row[ix] for row, ix in zip(X, ixs)]) 0.16s

X[np.arange(len(ixs)), ixs.T].T 0.175s

X.take(idx+np.arange(0, X.shape[0]*X.shape[1], X.shape[1])[:,None]) 33s

np.fromiter((X[i, j] for i, row in enumerate(ixs) for j in row), dtype=X.dtype).reshape(ixs.shape) 2.4s

like image 592
mxbi Avatar asked Dec 18 '22 00:12

mxbi


2 Answers

You can use this:

X[np.arange(len(ixs)), ixs.T].T

Here is the reference for complex indexing.

like image 51
llllllllll Avatar answered Dec 27 '22 00:12

llllllllll


I believe you can use .take thusly:

In [185]: X
Out[185]:
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])

In [186]: idx
Out[186]:
array([[1, 3],
       [0, 1],
       [1, 2]])

In [187]: X.take(idx + (np.arange(X.shape[0]) * X.shape[1]).reshape(-1, 1))
Out[187]:
array([[ 2,  4],
       [ 5,  6],
       [10, 11]])

If your array dimensions are massive, it might be faster, albeit uglier, to do:

idx+np.arange(0, X.shape[0]*X.shape[1], X.shape[1])[:,None]

Just for fun, see how the following performs:

np.fromiter((X[i, j] for i, row in enumerate(ixs) for j in row), dtype=X.dtype, count=ixs.size).reshape(ixs.shape)

Edit to add timings

In [15]: X = np.arange(1000*10000, dtype=np.int32).reshape(1000,-1)

In [16]: ixs = np.random.randint(0, 10000, (1000, 2))

In [17]: ixs.sort(axis=1)

In [18]: ixs
Out[18]:
array([[2738, 3511],
       [3600, 7414],
       [7426, 9851],
       ...,
       [1654, 8252],
       [2194, 8200],
       [5497, 8900]])

In [19]: %timeit  np.array([row[ix] for row, ix in zip(X, ixs)])
928 µs ± 23.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [20]: %timeit X[np.arange(len(ixs)), ixs.T].T
23.6 µs ± 491 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [21]: %timeit X.take(idx+np.arange(0, X.shape[0]*X.shape[1], X.shape[1])[:,None])
20.6 µs ± 530 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [22]: %timeit np.fromiter((X[i, j] for i, row in enumerate(ixs) for j in row), dtype=X.dtype, count=ixs.size).reshape(ixs.shape)
1.42 ms ± 9.94 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

@mxbi I've added some timings and my results aren't really consistent with yours, you should check it out

Here's a larger array:

In [33]: X = np.arange(10000*100000, dtype=np.int32).reshape(10000,-1)

In [34]: ixs = np.random.randint(0, 100000, (10000, 2))

In [35]: ixs.sort(axis=1)

In [36]: X.shape
Out[36]: (10000, 100000)

In [37]: ixs.shape
Out[37]: (10000, 2)

With some results:

In [42]: %timeit  np.array([row[ix] for row, ix in zip(X, ixs)])
11.4 ms ± 177 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [43]: %timeit X[np.arange(len(ixs)), ixs.T].T
596 µs ± 17.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [44]: %timeit X.take(ixs+np.arange(0, X.shape[0]*X.shape[1], X.shape[1])[:,None])
540 µs ± 16.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Now, we are using column 500 indices instead of two, and we see the list-comprehension start winning out:

In [45]: ixs = np.random.randint(0, 100000, (10000, 500))

In [46]: ixs.sort(axis=1)

In [47]: %timeit  np.array([row[ix] for row, ix in zip(X, ixs)])
93 ms ± 1.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [48]: %timeit X[np.arange(len(ixs)), ixs.T].T
133 ms ± 638 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [49]: %timeit X.take(ixs+np.arange(0, X.shape[0]*X.shape[1], X.shape[1])[:,None])
87.5 ms ± 1.13 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
like image 22
juanpa.arrivillaga Avatar answered Dec 27 '22 00:12

juanpa.arrivillaga