Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Incorrect results when applying solution to real data

I've tried to apply the solution provided in this question to my real data: Selecting rows in a MultiIndexed dataframe. Somehow I cannot get the results it should give. I've attached both the dataframe to select from, as well as the result.

What I need;

Rows 3, 11 AND 12 should be returned (when you add the 4 columns consecutively, 12 should be selected as well. It isn't now).

    df_test = pd.read_csv('df_test.csv')

    def find_window(df):
        v = df.values
        s = np.vstack([np.zeros((1, v.shape[1])), v.cumsum(0)])

        threshold = 0

        r, c = np.triu_indices(s.shape[0], 1)
        d = (c - r)[:, None]
        e = s[c] - s[r]
        mask = (e / d < threshold).all(1)
        rng = np.arange(mask.shape[0])

        if mask.any():
            idx = rng[mask][d[mask].argmax()]

            i0, i1 = r[idx], c[idx]
            return pd.DataFrame(
                v[i0:i1],
                df.loc[df.name].index[i0:i1],
                df.columns
            )

    cols = ['2012', '2013', '2014', '2015']

    df_test.groupby(level=0)[cols].apply(find_window)

csv_file is here: https://docs.google.com/spreadsheets/d/19oOoBdAs3xRBWq6HReizlqrkWoQR2159nk8GWoR_4-g/edit?usp=sharing

EDIT: Correct dataframes added. enter image description here

enter image description here

Note: Blue frame = rows which should be returned, yellow frames is consecutive column values which are < 0 (threshold).

like image 932
Zanshin Avatar asked Feb 07 '17 16:02

Zanshin


1 Answers

I couldn't figure out the way to modify the original question you were linking to, since your solution looked like it should work. However, this is an iterative way to solve what you're looking for.

import pandas as pd


df_test = pd.read_csv('df_test.csv')
print(df_test.head())
"""

   bins_DO    L  T2011   2011  T2012  2012  T2013   2013  T2014   2014  T2015   2015  Ttotal  total
0        0  IR1      6  -6.06     13 -3.22     12  -1.60      7  14.64     12 -18.20      50 -14.44
1        1  IR1     14 -16.32     12 -6.74     14  -1.22      5   1.58      8  -0.42      53 -23.12
2        2  IR1     10  -9.14     10 -0.42     10  11.84     13  -5.74      7  -3.10      50  -6.56
3        3  IR1      9 -13.78     14 -3.14     10  -2.48      6  -0.02      5  -4.78      44 -24.20
4        4  IR1      6   0.54      9 -9.40     15 -11.20      7   0.68      9  12.04      46  -7.34

"""
cols = ['2012', '2013', '2014', '2015']


def process_df(df: pd.DataFrame, cols: list, threshold: float):
    # initialize the benchmark
    # this gets reset any time the newest row fails the threshold test
    base_vals = [0 for _ in cols]
    keep_col = []

    for row in df[cols].values:
        # by default, keep the row
        keep_row = True
        for x in range(len(cols)):
            # if it fails on the row, then make keep row false
            if row[x] + base_vals[x] > threshold:
                keep_row = False

        keep_col.append(keep_row)

        if keep_row:
            # if we were happy with those results, then keep adding the column values to the base_vals
            for x in range(len(cols)):
                base_vals[x] += row[x]
        else:
            # otherwise, reset the base vals
            base_vals = [0 for _ in cols]

    # only keep rows that we want
    df = df.loc[keep_col, :]

    return df


new_df = process_df(df = df_test, cols = cols, threshold = 0)
print(new_df)

"""

    bins_DO    L  T2011   2011  T2012   2012  T2013   2013  T2014   2014  T2015  2015  Ttotal  total
3         3  IR1      9 -13.78     14  -3.14     10  -2.48      6  -0.02      5 -4.78      44 -24.20
11       11  IR1      7   7.10     10 -10.04      7 -10.60     17  -5.56     11 -8.44      52 -27.54
12       12  IR1     10  -0.28      7  -7.30      8   5.96      8 -12.58     10 -6.86      43 -21.06

"""
like image 195
Caleb Courtney Avatar answered Sep 23 '22 17:09

Caleb Courtney