I would like to include null values in an Apache Spark join. Spark doesn't include rows with null by default.
Here is the default Spark behavior.
val numbersDf = Seq(
("123"),
("456"),
(null),
("")
).toDF("numbers")
val lettersDf = Seq(
("123", "abc"),
("456", "def"),
(null, "zzz"),
("", "hhh")
).toDF("numbers", "letters")
val joinedDf = numbersDf.join(lettersDf, Seq("numbers"))
Here is the output of joinedDf.show()
:
+-------+-------+
|numbers|letters|
+-------+-------+
| 123| abc|
| 456| def|
| | hhh|
+-------+-------+
This is the output I would like:
+-------+-------+
|numbers|letters|
+-------+-------+
| 123| abc|
| 456| def|
| | hhh|
| null| zzz|
+-------+-------+
Spark SQL supports null ordering specification in ORDER BY clause. Spark processes the ORDER BY clause by placing all the NULL values at first or at last depending on the null ordering specification.
In SQL Full Outer Join, all rows from both the tables are included. If there are any unmatched rows, it shows NULL values for them.
Null values in tables or views being joined never match each other. Since bit columns do not permit null values, a value of 0 appears in an outer join when there is no match for a bit column in the inner table. The result of a join of null with any other value is null.
Spark provides a special NULL
safe equality operator:
numbersDf
.join(lettersDf, numbersDf("numbers") <=> lettersDf("numbers"))
.drop(lettersDf("numbers"))
+-------+-------+
|numbers|letters|
+-------+-------+
| 123| abc|
| 456| def|
| null| zzz|
| | hhh|
+-------+-------+
Be careful not to use it with Spark 1.5 or earlier. Prior to Spark 1.6 it required a Cartesian product (SPARK-11111 - Fast null-safe join).
In Spark 2.3.0 or later you can use Column.eqNullSafe
in PySpark:
numbers_df = sc.parallelize([
("123", ), ("456", ), (None, ), ("", )
]).toDF(["numbers"])
letters_df = sc.parallelize([
("123", "abc"), ("456", "def"), (None, "zzz"), ("", "hhh")
]).toDF(["numbers", "letters"])
numbers_df.join(letters_df, numbers_df.numbers.eqNullSafe(letters_df.numbers))
+-------+-------+-------+
|numbers|numbers|letters|
+-------+-------+-------+
| 456| 456| def|
| null| null| zzz|
| | | hhh|
| 123| 123| abc|
+-------+-------+-------+
and %<=>%
in SparkR:
numbers_df <- createDataFrame(data.frame(numbers = c("123", "456", NA, "")))
letters_df <- createDataFrame(data.frame(
numbers = c("123", "456", NA, ""),
letters = c("abc", "def", "zzz", "hhh")
))
head(join(numbers_df, letters_df, numbers_df$numbers %<=>% letters_df$numbers))
numbers numbers letters
1 456 456 def
2 <NA> <NA> zzz
3 hhh
4 123 123 abc
With SQL (Spark 2.2.0+) you can use IS NOT DISTINCT FROM
:
SELECT * FROM numbers JOIN letters
ON numbers.numbers IS NOT DISTINCT FROM letters.numbers
This is can be used with DataFrame
API as well:
numbersDf.alias("numbers")
.join(lettersDf.alias("letters"))
.where("numbers.numbers IS NOT DISTINCT FROM letters.numbers")
val numbers2 = numbersDf.withColumnRenamed("numbers","num1") //rename columns so that we can disambiguate them in the join
val letters2 = lettersDf.withColumnRenamed("numbers","num2")
val joinedDf = numbers2.join(letters2, $"num1" === $"num2" || ($"num1".isNull && $"num2".isNull) ,"outer")
joinedDf.select("num1","letters").withColumnRenamed("num1","numbers").show //rename the columns back to the original names
Based on K L's idea, you could use foldLeft to generate join column expression:
def nullSafeJoin(rightDF: DataFrame, columns: Seq[String], joinType: String)(leftDF: DataFrame): DataFrame =
{
val colExpr: Column = leftDF(columns.head) <=> rightDF(columns.head)
val fullExpr = columns.tail.foldLeft(colExpr) {
(colExpr, p) => colExpr && leftDF(p) <=> rightDF(p)
}
leftDF.join(rightDF, fullExpr, joinType)
}
then, you could call this function just like:
aDF.transform(nullSafejoin(bDF, columns, joinType))
Complementing the other answers, for PYSPARK < 2.3.0 you would not have Column.eqNullSafe neither IS NOT DISTINCT FROM.
You still can build the <=> operator with an sql expression to include it in the join, as long as you define alias for the join queries:
from pyspark.sql.types import StringType
import pyspark.sql.functions as F
numbers_df = spark.createDataFrame (["123","456",None,""], StringType()).toDF("numbers")
letters_df = spark.createDataFrame ([("123", "abc"),("456", "def"),(None, "zzz"),("", "hhh") ]).\
toDF("numbers", "letters")
joined_df = numbers_df.alias("numbers").join(letters_df.alias("letters"),
F.expr('numbers.numbers <=> letters.numbers')).\
select('letters.*')
joined_df.show()
+-------+-------+
|numbers|letters|
+-------+-------+
| 456| def|
| null| zzz|
| | hhh|
| 123| abc|
+-------+-------+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With