I've got pandas data with some columns of text type. There are some NaN values along with these text columns. What I'm trying to do is to impute those NaN's by sklearn.preprocessing.Imputer
(replacing NaN by the most frequent value). The problem is in implementation. Suppose there is a Pandas dataframe df with 30 columns, 10 of which are of categorical nature. Once I run:
from sklearn.preprocessing import Imputer imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=0) imp.fit(df)
Python generates an error: 'could not convert string to float: 'run1''
, where 'run1' is an ordinary (non-missing) value from the first column with categorical data.
Any help would be very welcome
You can use Sklearn. impute class SimpleImputer to impute/replace missing values for both numerical and categorical features. For numerical missing values, a strategy such as mean, median, most frequent, and constant can be used. For categorical features, a strategy such as the most frequent and constant can be used.
Imputation Method 1: Most Common Class One approach to imputing categorical features is to replace missing values with the most common class. You can do with by taking the index of the most common feature given in Pandas' value_counts function.
Replace missing values with the most frequent value: You can always impute them based on Mode in the case of categorical variables, just make sure you don't have highly skewed class distributions.
Step 1: Find which category occurred most in each category using mode(). Step 2: Replace all NAN values in that column with that category. Step 3: Drop original columns and keep newly imputed columns. Advantage: Simple and easy to implement for categorical variables/columns.
To use mean values for numeric columns and the most frequent value for non-numeric columns you could do something like this. You could further distinguish between integers and floats. I guess it might make sense to use the median for integer columns instead.
import pandas as pd import numpy as np from sklearn.base import TransformerMixin class DataFrameImputer(TransformerMixin): def __init__(self): """Impute missing values. Columns of dtype object are imputed with the most frequent value in column. Columns of other types are imputed with mean of column. """ def fit(self, X, y=None): self.fill = pd.Series([X[c].value_counts().index[0] if X[c].dtype == np.dtype('O') else X[c].mean() for c in X], index=X.columns) return self def transform(self, X, y=None): return X.fillna(self.fill) data = [ ['a', 1, 2], ['b', 1, 1], ['b', 2, 2], [np.nan, np.nan, np.nan] ] X = pd.DataFrame(data) xt = DataFrameImputer().fit_transform(X) print('before...') print(X) print('after...') print(xt)
which prints,
before... 0 1 2 0 a 1 2 1 b 1 1 2 b 2 2 3 NaN NaN NaN after... 0 1 2 0 a 1.000000 2.000000 1 b 1.000000 1.000000 2 b 2.000000 2.000000 3 b 1.333333 1.666667
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With