Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Improve rectangle contour detection in image using OpenCV

I am trying to detect the rectangular boxes in the given image

Original image: original image but the image is not good enough to detect rectangles, how can i improve it and detect all the rectangles in image?

I tried to convert the image into binary image using canny edge detection and applied dilation ,bilateral filter then the output is this:

binary image

I tried to apply all the morphologyEx, sobel then to i was not able to detect all rectangles in the image. If i am able to find all the boundary of rectangle then i can detect all rectangles using find countours but how can i improve image to detect all the rectangles.

The code for the given conversion is given below

img =  cv2.imread("givenimage.png",0)
img = cv2.resize(img,(1280,720))
edges = cv2.Canny(img,100,200)
kernal = np.ones((2,2),np.uint8)
dilation = cv2.dilate(edges, kernal , iterations=2)
bilateral = cv2.bilateralFilter(dilation,9,75,75)
contours, hireracy = cv2.findContours(bilateral,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for i,contour in enumerate(contours):
    approx = cv2.approxPolyDP(contour, 0.01*cv2.arcLength(contour,True),True)   
    if len(approx) ==4:
        X,Y,W,H = cv2.boundingRect(approx)
        aspectratio = float(W)/H
        if aspectratio >=1.2 :
            box = cv2.rectangle(img, (X,Y), (X+W,Y+H), (0,0,255), 2)
            cropped = img[Y: Y+H, X: X+W]
            cv2.drawContours(img, [approx], 0, (0,255,0),5)
            x = approx.ravel()[0]
            y = approx.ravel()[1]
            cv2.putText(img, "rectangle"+str(i), (x,y),cv2.FONT_HERSHEY_COMPLEX, 0.5, (0,255,0))
cv2.imshow("image",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Output of the following program detects only 8 rectangles:

Output

but i need to detect all the rectangles present in the image

1) Can I increase the thickness of the image for all the black pixels in this:

original image

2) Can I dilate all the pixel region between the white boundary of the

binary image

like image 592
J Harish Naidu Avatar asked Jul 20 '19 15:07

J Harish Naidu


1 Answers

Here's a simple approach:

  • Convert image to grayscale and Gaussian blur
  • Perform canny edge detection
  • Find contours and draw rectangles

Canny edge detection

enter image description here

Results

enter image description here

import cv2

image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
canny = cv2.Canny(blurred, 120, 255, 1)

# Find contours
cnts = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]

# Iterate thorugh contours and draw rectangles around contours
for c in cnts:
    x,y,w,h = cv2.boundingRect(c)
    cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)

cv2.imshow('canny', canny)
cv2.imshow('image', image)
cv2.imwrite('canny.png', canny)
cv2.imwrite('image.png', image)
cv2.waitKey(0)
like image 53
nathancy Avatar answered Sep 20 '22 00:09

nathancy