I have a class A:
template <typename T, int I> struct A {};
and a class B. I would like object's of type B to implicitly convert to A when given as function arguments. B looks like this:
template <typename T>
struct B {
operator A<T,0> &() const { return *new A<T,0>(); }
};
However, my test (below) fails with GCC 4.5, giving the error: no matching function for call to 'test(B&)' Where am I going wrong here? Do other compilers also reject this?
template <typename T, int I>
void test(A<T,I> &a) { delete &a; }
int main(int argc, char *argv[])
{
B<int> b;
test(b);
return 0;
}
p.s. I've now put my own solution in an answer below.
Unrelated to your problem but return *new A<T,0>();
is wrong since it leaks memoryinvites a memory leak. You should not use new
here. return A<T, 0>();
and removing the reference from the return type works just fine and does not leak memory.
If you want an implicit conversion from B to A you would need either:
A cast operator on B:
operator A<T,0>();
or an A constructor which takes a B reference:
A( const B& other );
or for B to derive from A. What you have declared:
operator A<T,0> &() const;
looks a bit like an ill-declared address-of overload.
However, since test() takes a reference (and non-const at that), the casting operator option won't work.
This is what I've tested:
template <typename T, int I> struct A {};
template <typename T>
struct B {
//operator A<T,0> &() const { return *new A<T,0>(); }
template< int I >
operator A<T, I> () const { return A< T, 0 >(); }
};
template <typename T, int I>
void test(A<T,I> &) { }
int f()
{
B<int> b;
A<int, 0> a( b );
test(a); // <-- Success
test(b); // <-- Failure, "could not deduce template argument"
return 0;
}
Conversion to A by initialising a local variable works fine.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With