As regards in Ruby we don't have pointer like c++ , How can we implement tree?
You don't necessarily need pointers or references for building trees, do you?
Here is a basic example:
class Tree
attr_accessor :children, :value
def initialize(v)
@value = v
@children = []
end
end
t = Tree.new(7)
t.children << Tree.new(3)
t.children << Tree.new(11)
t.value # 7
t.children[0].value # 3
t.children[1].value # 11
One doesn't really need explicit pointers. Though people may expect this because they often learn about self-referential data structures in C and C++ and expect to see the equivalent of a point with an * sign preceding it. I believe the following snippet might be useful.
Ref: http://www.thelearningpoint.net/computer-science/basic-data-structures-in-ruby---binary-search-tre
# Example of Self-Referential Data Structures - A Binary Tree
class TreeNode
attr_accessor :value, :left, :right
# The Tree node contains a value, and a pointer to two children - left and right
# Values lesser than this node will be inserted on its left
# Values greater than it will be inserted on its right
def initialize val,left,right
@value = val
@left = left
@right = right
end
end
class BinarySearchTree
# Initialize the Root Node
def initialize val
puts "Initializing with: " + val.to_s
@root = TreeNode.new(val,nil,nil)
end
# Pre-Order Traversal
def preOrderTraversal(node= @root)
return if (node == nil)
preOrderTraversal(node.left)
preOrderTraversal(node.right)
puts node.value.to_s
end
# Post-Order Traversal
def postOrderTraversal(node = @root)
return if (node == nil)
puts node.value.to_s
postOrderTraversal(node.left)
postOrderTraversal(node.right)
end
# In-Order Traversal : Displays the final output in sorted order
# Display smaller children first (by going left)
# Then display the value in the current node
# Then display the larger children on the right
def inOrderTraversal(node = @root)
return if (node == nil)
inOrderTraversal(node.left)
puts node.value.to_s
inOrderTraversal(node.right)
end
# Inserting a value
# When value > current node, go towards the right
# when value < current node, go towards the left
# when you hit a nil node, it means, the new node should be created there
# Duplicate values are not inserted in the tree
def insert(value)
puts "Inserting :" + value.to_s
current_node = @root
while nil != current_node
if (value < current_node.value) && (current_node.left == nil)
current_node.left = TreeNode.new(value,nil,nil)
elsif (value > current_node.value) && (current_node.right == nil)
current_node.right = TreeNode.new(value,nil,nil)
elsif (value < current_node.value)
current_node = current_node.left
elsif (value > current_node.value)
current_node = current_node.right
else
return
end
end
end
end
bst = BinarySearchTree.new(10)
bst.insert(11)
bst.insert(9)
bst.insert(5)
bst.insert(7)
bst.insert(18)
bst.insert(17)
# Demonstrating Different Kinds of Traversals
puts "In-Order Traversal:"
bst.inOrderTraversal
puts "Pre-Order Traversal:"
bst.preOrderTraversal
puts "Post-Order Traversal:"
bst.postOrderTraversal
=begin
Output :
Initializing with: 10
Inserting :11
Inserting :9
Inserting :5
Inserting :7
Inserting :18
Inserting :17
In-Order Traversal:
5
7
9
10
11
17
18
Pre-Order Traversal:
7
5
9
17
18
11
10
Post-Order Traversal:
10
9
5
7
11
18
17
=end
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With