Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Implementing FFT over finite fields

I would like to implement multiplication of polynomials using NTT. I followed Number-theoretic transform (integer DFT) and it seems to work.

Now I would like to implement multiplication of polynomials over finite fields Z_p[x] where p is arbitrary prime number.

Does it changes anything that the coefficients are now bounded by p, compared to the former unbounded case?

In particular, original NTT required to find prime number N as the working modulus that is larger than (magnitude of largest element of input vector)^2 * (length of input vector) + 1 so that the result never overflows. If the result is going to be bounded by that p prime anyway, how small can the modulus be? Note that p - 1 does not have to be of form (some positive integer) * (length of input vector).

Edit: I copy-pasted the source from the link above to illustrate the problem:

# 
# Number-theoretic transform library (Python 2, 3)
# 
# Copyright (c) 2017 Project Nayuki
# All rights reserved. Contact Nayuki for licensing.
# https://www.nayuki.io/page/number-theoretic-transform-integer-dft
#

import itertools, numbers

def find_params_and_transform(invec, minmod):
    check_int(minmod)
    mod = find_modulus(len(invec), minmod)
    root = find_primitive_root(len(invec), mod - 1, mod)
    return (transform(invec, root, mod), root, mod)

def check_int(n):
    if not isinstance(n, numbers.Integral):
        raise TypeError()

def find_modulus(veclen, minimum):
    check_int(veclen)
    check_int(minimum)
    if veclen < 1 or minimum < 1:
        raise ValueError()
    start = (minimum - 1 + veclen - 1) // veclen
    for i in itertools.count(max(start, 1)):
        n = i * veclen + 1
        assert n >= minimum
        if is_prime(n):
            return n

def is_prime(n):
    check_int(n)
    if n <= 1:
        raise ValueError()
    return all((n % i != 0) for i in range(2, sqrt(n) + 1))

def sqrt(n):
    check_int(n)
    if n < 0:
        raise ValueError()
    i = 1
    while i * i <= n:
        i *= 2
    result = 0
    while i > 0:
        if (result + i)**2 <= n:
            result += i
        i //= 2
    return result

def find_primitive_root(degree, totient, mod):
    check_int(degree)
    check_int(totient)
    check_int(mod)
    if not (1 <= degree <= totient < mod):
        raise ValueError()
    if totient % degree != 0:
        raise ValueError()
    gen = find_generator(totient, mod)
    root = pow(gen, totient // degree, mod)
    assert 0 <= root < mod
    return root

def find_generator(totient, mod):
    check_int(totient)
    check_int(mod)
    if not (1 <= totient < mod):
        raise ValueError()
    for i in range(1, mod):
        if is_generator(i, totient, mod):
            return i
    raise ValueError("No generator exists")

def is_generator(val, totient, mod):
    check_int(val)
    check_int(totient)
    check_int(mod)
    if not (0 <= val < mod):
        raise ValueError()
    if not (1 <= totient < mod):
        raise ValueError()
    pf = unique_prime_factors(totient)
    return pow(val, totient, mod) == 1 and all((pow(val, totient // p, mod) != 1) for p in pf)

def unique_prime_factors(n):
    check_int(n)
    if n < 1:
        raise ValueError()
    result = []
    i = 2
    end = sqrt(n)
    while i <= end:
        if n % i == 0:
            n //= i
            result.append(i)
            while n % i == 0:
                n //= i
            end = sqrt(n)
        i += 1
    if n > 1:
        result.append(n)
    return result

def transform(invec, root, mod):
    check_int(root)
    check_int(mod)
    if len(invec) >= mod:
        raise ValueError()
    if not all((0 <= val < mod) for val in invec):
        raise ValueError()
    if not (1 <= root < mod):
        raise ValueError()

    outvec = []
    for i in range(len(invec)):
        temp = 0
        for (j, val) in enumerate(invec):
            temp += val * pow(root, i * j, mod)
            temp %= mod
        outvec.append(temp)
    return outvec

def inverse_transform(invec, root, mod):
    outvec = transform(invec, reciprocal(root, mod), mod)
    scaler = reciprocal(len(invec), mod)
    return [(val * scaler % mod) for val in outvec]

def reciprocal(n, mod):
    check_int(n)
    check_int(mod)
    if not (0 <= n < mod):
        raise ValueError()
    x, y = mod, n
    a, b = 0, 1
    while y != 0:
        a, b = b, a - x // y * b
        x, y = y, x % y
    if x == 1:
        return a % mod
    else:
        raise ValueError("Reciprocal does not exist")

def circular_convolve(vec0, vec1):
    if not (0 < len(vec0) == len(vec1)):
        raise ValueError()
    if any((val < 0) for val in itertools.chain(vec0, vec1)):
        raise ValueError()
    maxval = max(val for val in itertools.chain(vec0, vec1))
    minmod = maxval**2 * len(vec0) + 1
    temp0, root, mod = find_params_and_transform(vec0, minmod)
    temp1 = transform(vec1, root, mod)
    temp2 = [(x * y % mod) for (x, y) in zip(temp0, temp1)]
    return inverse_transform(temp2, root, mod)

vec0 = [24, 12, 28, 8, 0, 0, 0, 0]
vec1 = [4, 26, 29, 23, 0, 0, 0, 0]

print(circular_convolve(vec0, vec1))

def modulo(vec, prime):
    return [x % prime for x in vec]

print(modulo(circular_convolve(vec0, vec1), 31))

Prints:

[96, 672, 1120, 1660, 1296, 876, 184, 0]
[3, 21, 4, 17, 25, 8, 29, 0]

However, where I change minmod = maxval**2 * len(vec0) + 1 to minmod = maxval + 1, it stops working:

[14, 16, 13, 20, 25, 15, 20, 0]
[14, 16, 13, 20, 25, 15, 20, 0]

What is the smallest minmod (N in the link above) be in order to work as expected?

like image 876
minmax Avatar asked Sep 11 '18 06:09

minmax


People also ask

What are the limitations of FFT?

A disadvantage associated with the FFT is the restricted range of waveform data that can be transformed and the need to apply a window weighting function (to be defined) to the waveform to compensate for spectral leakage (also to be defined). An alternative to the FFT is the discrete Fourier transform (DFT).

Why is FFT more efficient than DFT?

Graphical explanation for the speed of the Fast Fourier Transform. For a sample set of 1024 values, the FFT is 102.4 times faster than the discrete Fourier transform (DFT). The basis for this remarkable speed advantage is the `bit-reversal' scheme of the Cooley-Tukey algorithm.

What are the two types of FFT?

These are called the radix-2 and mixed-radix cases, respectively (and other variants such as the split-radix FFT have their own names as well).

Which is the fastest FFT algorithm?

Currently, the fastest such algorithm is the Fast Fourier Transform (FFT), which computes the DFT of an n-dimensional signal in O(nlogn) time.


1 Answers

If your input of n integers is bound to some prime q (any mod q not just prime will be the same) You can use it as a max value +1 but beware you can not use it as a prime p for the NTT because NTT prime p has special properties. All of them are here:

  • Translation from Complex-FFT to Finite-Field-FFT

so our max value of each input is q-1 but during your task computation (Convolution on 2 NTT results) the magnitude of first layer results can rise up to n.(q-1) but as we are doing convolution on them the input magnitude of final iNTT will rise up to:

m = n.((q-1)^2)

If you are doing different operations on the NTTs than the m equation might change.

Now let us get back to the p so in a nutshell you can use any prime p that upholds these:

p mod n == 1
p > m

and there exist 1 <= r,L < p such that:

p mod (L-1) = 0
r^(L*i) mod p == 1 // i = { 0,n }
r^(L*i) mod p != 1 // i = { 1,2,3, ... n-1 }

If all this is satisfied then p is nth root of unity and can be used for NTT. To find such prime and also the r,L look at the link above (there is C++ code that finds such).

For example during string multiplication we take 2 strings do NTT on them then convolute the result and iNTT back the result (that is sum of both input sizes). So for example:

                                99999999999999999999999999999999
                               *99999999999999999999999999999999
----------------------------------------------------------------
9999999999999999999999999999999800000000000000000000000000000001

the q = 10 and both operands are 9^32 so n=32 hence m = 9*9*32 = 2592 and the found prime is p = 2689. As you can see the result matches so no overflow occurs. However if I use any smaller prime that still fit all the other conditions the result will not match. I used this specifically to stretch the NTT values as much as possible (all values are q-1 and sizes are equal to the same power of 2)

In case your NTT is fast and n is not a power of 2 then you need to zero pad to nearest higher or equal power of 2 size for each NTT. But that should not affect the m value as zero pad should not increase the magnitude of values. My testing proves it so for convolution you can use:

m = (n1+n2).((q-1)^2)/2

where n1,n2 are the raw inputs sizes before zeropad.

For more info about implementing NTT you can check out mine in C++ (extensively optimized):

  • Modular arithmetics and NTT (finite field DFT) optimizations

So to answer your questions:

  1. yes you can take advantage of the fact that input is mod q but you can not use q as p !!!

  2. You can use minmod = n * (maxval + 1) only for single NTT (or first layer of NTTs) but as you are chaining them with convolution during your NTT usage you can not use that for the final INTT stage !!!

However as I mentioned in the comments easiest is to use max possible p that fits in the data type you are using and is usable for all power of 2 sizes of input supported.

Which basically renders your question irrelevant. The only case I can think of where this is not possible/desired is on arbitrary precision numbers where there is "no" max limit. There are many performance issues binded to variable p as the search for p is really slow (may be even slower than the NTT itself) and also variable p disables many performance optimizations of the modular arithmetics needed making the NTT really slow.

like image 193
Spektre Avatar answered Oct 06 '22 17:10

Spektre