I am implementing a Harris corner detector for educational purposes but I'm stuck at the harris response part. Basically, what I am doing, is:
1 and 2 seem to work fine; however, I get very small values as the Harris response, and no point does reach the threshold. Input is a standard outdoor photography.
[...]
[Ix, Iy] = intensityGradients(img);
g = fspecial('gaussian');
Ix = imfilter(Ix, g);
Iy = imfilter(Iy, g);
H = harrisResponse(Ix, Iy);
[...]
function K = harrisResponse(Ix, Iy)
max = 0;
[sy, sx] = size(Ix);
K = zeros(sy, sx);
for i = 1:sx,
for j = 1:sy,
H = [Ix(j,i) * Ix(j,i), Ix(j,i) * Iy(j,i)
Ix(j,i) * Iy(j,i), Iy(j,i) * Iy(j,i)];
K(j,i) = det(H) / trace(H);
if K(j,i) > max,
max = K(j,i);
end
end
end
max
end
For the sample picture, max ends up being 6.4163e-018 which seems far too low.
A corner in Harris corner detection is defined as "the highest value pixel in a region" (usually 3X3
or 5x5
) so your comment about no point reaching a "threshold" seems strange to me. Just collect all pixels that have a higher value than all other pixels in the 5x5
neighborhood around them.
Apart from that: I'm not 100% sure, but I think you should have:
K(j,i) = det(H) - lambda*(trace(H)^2)
Where lambda is a positive constant that works in your case (and Harris suggested value is 0.04).
In general the only sensible moment to filter your input is before this point:
[Ix, Iy] = intensityGradients(img);
Filtering Ix2
, Iy2
and Ixy
doesn't make much sense to me.
Further, I think your sample code is wrong here (does function harrisResponse
have two or three input variables?):
H = harrisResponse(Ix2, Ixy, Iy2);
[...]
function K = harrisResponse(Ix, Iy)
The solution that I implemented with python, it works for me I hope you find what you are looking for
import numpy as np
import matplotlib.pyplot as plt
from PIL.Image import *
from scipy import ndimage
def imap1(im):
print('testing the picture . . .')
a = Image.getpixel(im, (0, 0))
if type(a) == int:
return im
else:
c, l = im.size
imarr = np.asarray(im)
neim = np.zeros((l, c))
for i in range(l):
for j in range(c):
t = imarr[i, j]
ts = sum(t)/len(t)
neim[i, j] = ts
return neim
def Harris(im):
neim = imap1(im)
imarr = np.asarray(neim, dtype=np.float64)
ix = ndimage.sobel(imarr, 0)
iy = ndimage.sobel(imarr, 1)
ix2 = ix * ix
iy2 = iy * iy
ixy = ix * iy
ix2 = ndimage.gaussian_filter(ix2, sigma=2)
iy2 = ndimage.gaussian_filter(iy2, sigma=2)
ixy = ndimage.gaussian_filter(ixy, sigma=2)
c, l = imarr.shape
result = np.zeros((c, l))
r = np.zeros((c, l))
rmax = 0
for i in range(c):
print('loking for corner . . .')
for j in range(l):
print('test ',j)
m = np.array([[ix2[i, j], ixy[i, j]], [ixy[i, j], iy2[i, j]]], dtype=np.float64)
r[i, j] = np.linalg.det(m) - 0.04 * (np.power(np.trace(m), 2))
if r[i, j] > rmax:
rmax = r[i, j]
for i in range(c - 1):
print(". .")
for j in range(l - 1):
print('loking')
if r[i, j] > 0.01 * rmax and r[i, j] > r[i-1, j-1] and r[i, j] > r[i-1, j+1]\
and r[i, j] > r[i+1, j-1] and r[i, j] > r[i+1, j+1]:
result[i, j] = 1
pc, pr = np.where(result == 1)
plt.plot(pr, pc, 'r+')
plt.savefig('harris_test.png')
plt.imshow(im, 'gray')
plt.show()
# plt.imsave('harris_test.png', im, 'gray')
im = open('chess.png')
Harris(im)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With