I was trying to do an implementation of QuickSort (with median of 3 partitioning-element and insertion sort for small arrays) and compare it to an implementation of MergeSort, but even when QuickSort average time should be better than that of MergeSort, every time I execute it, it seems to be taking more time to sort an array (even one in random order). Any idea why can this be happening?
QuickSort:
public class Quick {
private static final int M = 10;
private static Random random = new Random();
public void sort(int[] a) {
sort(a, 0, a.length - 1);
insertionSort(a, 0, a.length - 1);
}
private void sort(int[] a, int lo, int hi) {
if (hi - lo <= 10) return;
swap(a, lo, pivot(a, lo, hi));
int lt = lo, gt = hi;
int v = a[lo];
int i = lo;
while (i <= gt) {
if (a[i] < v) swap(a, lt++, i++);
else if (a[i] > v) swap(a, i, gt--);
else i++;
}
// a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi].
sort(a, lo, lt-1);
sort(a, gt+1, hi);
}
private int pivot(int[] a, int lo, int hi) {
int r1 = random.nextInt(hi - lo) + lo,
r2 = random.nextInt(hi - lo) + lo,
r3 = random.nextInt(hi - lo) + lo;
return median3(a, r1, r2, r3);
}
private void swap(int[] a, int i, int j) {
if (i == j) return;
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
private static int median3(int[] a, int i, int j, int k) {
return (a[i] < a[j] ?
(a[j] < a[k] ? j : a[i] < a[k] ? k : i) :
(a[k] < a[j] ? j : a[k] < a[i] ? k : i));
}
private void insertionSort(int[] a, int lo, int hi) {
for (int i = lo; i <= hi; i++)
for (int j = i; j > lo && a[j] < a[j-1]; j--)
swap(a, j, j-1);
}
}
MergeSort:
public class Merge {
public void sort(int[] a) {
int[] aux = new int[a.length];
sort(a, aux, 0, a.length - 1);
}
private void sort(int[] a, int[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);
merge(a, aux, lo, mid, hi);
}
private void merge(int[] a, int[] aux, int lo, int mid, int hi) {
System.arraycopy(a, lo, aux, lo, hi + 1 - lo);
// Merge
int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (aux[j] < aux[i]) a[k] = aux[j++];
else a[k] = aux[i++];
}
}
}
For example, when I ran this algorithms for 10 random arrays of length 10^8, MergeSort took an average of 13385.8 ms to execute, while QuickSort took an average of 14096.7 ms.
To clarify, this is how I measured execution times
public static void main(String[] args) {
int pow = (int) Math.pow(10, 8);
int[] a, b;
double[] m1 = new double[10],
m2 = m1.clone(),
double st, et;
Merge merge = new Merge();
Quick quick = new Quick();
for (int i = 0; i < 10; i++) {
a = randomArray(pow);
b = a.clone();
st = currentTimeMillis();
merge.sort(a);
et = currentTimeMillis();
m1[i] = et - st;
st = currentTimeMillis();
quick.sort(b);
et = currentTimeMillis();
m2[i] = et - st;
}
out.println("MergeSort: " + mean(m1));
out.println("QuickSort: " + mean(m2));
}
private static int[] randomArray(int n) {
r = new Random();
int[] a = new int[n];
for (int i = 0; i < a.length; i++) a[i] = r.nextInt();
return a;
}
Quick sort is more efficient and works faster than merge sort in case of smaller array size or datasets.
Indeed, it is because merge sort is implemented recursively that makes it faster than the other algorithms we've looked at thus far.
Time Complexity Merge Sort is a recursive algorithm and time complexity can be expressed as following recurrence relation. T(n) = 2T(n/2) + O(n) The solution of the above recurrence is O(nLogn).
After trying lots of things to find out where the issue was, I changed the function that created the random array, and it turns out QuickSort
actually works faster now. I don't really know why, but it seems that the way I created the array adversely affected the performance of QuickSort
. Now, what I did was that instead of generating an array of random integers, I generated an array form 1 to n and then shuffled it, as follows:
public static int[] permutation(int n) {
int[] a = new int[n];
for (int i = 0; i < n; ++i) a[i] = i + 1;
for (int i = 0; i < n; i++) {
int r = i + rnd.nextInt(n - i),
tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
return a;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With