In Scala, I need to create a product type &
that represents a compound value, e.g.:
val and: String & Int & User & ... = ???
I.e. and
should have a String
part and an Int
part and a User
parts inside. This is similar to Scala with
keyword:
val and: String with Int with User with ... = ???
Having such product type I need a way to, having a function A => A
, apply it to some product value and get that product back with A
part altered. It implies that each type in product must be unique - that's acceptable.
One important limitation is that, when applying a function A => A
to the product, I only know that the product has A
somewhere inside but no information about other types it consists of. But as a caller of the function, I pass it a product with full type information and expect to get this full type back as part of function signature.
In pseudo-code:
def update[A, Rest](product: A & Rest, f: A => A): A & Rest
Using Shapeless or other esoteric stuff is okay for me. I tried using HList
s but they are ordered, while something like heterogeneous set would be more appropriate here to represend A & Rest
part.
UPDATE:
Here is the code that solves my use case taken from Régis Jean-Gilles answer below wit added read support, some comments, and improved type-safety:
object product {
/** Product of `left` and `right` values. */
case class &[L, R](left: L, right: R)
implicit class AndPimp[L](val left: L) extends AnyVal {
/** Make a product of `this` (as left) and `right`. */
def &[R](right: R): L & R = new &(left, right)
}
/* Updater. */
/** Product updater able to update value of type `A`. */
trait ProductUpdater[P, A] {
/** Update product value of type `A`.
* @return updated product */
def update(product: P, f: A ⇒ A): P
}
trait LowPriorityProductUpdater {
/** Non-product value updater. */
implicit def valueUpdater[A]: ProductUpdater[A, A] = new ProductUpdater[A, A] {
override def update(product: A, f: A ⇒ A): A = f(product)
}
}
object ProductUpdater extends LowPriorityProductUpdater {
/** Left-biased product value updater. */
implicit def leftProductUpdater[L, R, A](implicit leftUpdater: ProductUpdater[L, A]): ProductUpdater[L & R, A] =
new ProductUpdater[L & R, A] {
override def update(product: L & R, f: A ⇒ A): L & R =
leftUpdater.update(product.left, f) & product.right
}
/** Right-biased product value updater. */
implicit def rightProductUpdater[L, R, A](implicit rightUpdater: ProductUpdater[R, A]): ProductUpdater[L & R, A] =
new ProductUpdater[L & R, A] {
override def update(product: L & R, f: A ⇒ A): L & R =
product.left & rightUpdater.update(product.right, f)
}
}
/** Update product value of type `A` with function `f`.
* Won't compile if product contains multiple `A` values.
* @return updated product */
def update[P, A](product: P)(f: A ⇒ A)(implicit updater: ProductUpdater[P, A]): P =
updater.update(product, f)
/* Reader. */
/** Product reader able to read value of type `A`. */
trait ProductReader[P, A] {
/** Read product value of type `A`. */
def read(product: P): A
}
trait LowPriorityProductReader {
/** Non-product value reader. */
implicit def valueReader[A]: ProductReader[A, A] = new ProductReader[A, A] {
override def read(product: A): A = product
}
}
object ProductReader extends LowPriorityProductReader {
/** Left-biased product value reader. */
implicit def leftProductReader[L, R, A](implicit leftReader: ProductReader[L, A]): ProductReader[L & R, A] =
new ProductReader[L & R, A] {
override def read(product: L & R): A =
leftReader.read(product.left)
}
/** Right-biased product value reader. */
implicit def rightProductReader[L, R, A](implicit rightReader: ProductReader[R, A]): ProductReader[L & R, A] =
new ProductReader[L & R, A] {
override def read(product: L & R): A =
rightReader.read(product.right)
}
}
/** Read product value of type `A`.
* Won't compile if product contains multiple `A` values.
* @return value of type `A` */
def read[P, A](product: P)(implicit productReader: ProductReader[P, A]): A =
productReader.read(product)
// let's test it
val p = 1 & 2.0 & "three"
read[Int & Double & String, Int](p) // 1
read[Int & Double & String, Double](p) // 2.0
read[Int & Double & String, String](p) // three
update[Int & Double & String, Int](p)(_ * 2) // 2 & 2.0 & three
update[Int & Double & String, Double](p)(_ * 2) // 1 & 4.0 & three
update[Int & Double & String, String](p)(_ * 2) // 1 & 2.0 & threethree
}
Here's a solution using only pure scala with no required library. It relies on a type class using a rather standard approach:
scala> :paste
// Entering paste mode (ctrl-D to finish)
case class &[L,R](left: L, right: R)
implicit class AndOp[L](val left: L) {
def &[R](right: R): L & R = new &(left, right)
}
trait ProductUpdater[P,A] {
def apply(p: P, f: A => A): P
}
trait LowPriorityProductUpdater {
implicit def noopValueUpdater[P,A]: ProductUpdater[P,A] = {
new ProductUpdater[P,A] {
def apply(p: P, f: A => A): P = p // keep as is
}
}
}
object ProductUpdater extends LowPriorityProductUpdater {
implicit def simpleValueUpdater[A]: ProductUpdater[A,A] = {
new ProductUpdater[A,A] {
def apply(p: A, f: A => A): A = f(p)
}
}
implicit def productUpdater[L, R, A](
implicit leftUpdater: ProductUpdater[L, A], rightUpdater: ProductUpdater[R, A]
): ProductUpdater[L & R, A] = {
new ProductUpdater[L & R, A] {
def apply(p: L & R, f: A => A): L & R = &(leftUpdater(p.left, f), rightUpdater(p.right, f))
}
}
}
def update[A,P](product: P)(f: A => A)(implicit updater: ProductUpdater[P,A]): P = updater(product, f)
// Exiting paste mode, now interpreting.
Let's test it:
scala> case class User(name: String, age: Int)
defined class User
scala> val p: String & Int & User & String = "hello" & 123 & User("Elwood", 25) & "bye"
p: &[&[&[String,Int],User],String] = &(&(&(hello,123),User(Elwood,25)),bye)
scala> update(p){ i: Int => i + 1 }
res0: &[&[&[String,Int],User],String] = &(&(&(hello,124),User(Elwood,25)),bye)
scala> update(p){ s: String => s.toUpperCase }
res1: &[&[&[String,Int],User],String] = &(&(&(HELLO,123),User(Elwood,25)),BYE)
scala> update(p){ user: User =>
| user.copy(name = user.name.toUpperCase, age = user.age*2)
| }
res2: &[&[&[String,Int],User],String] = &(&(&(hello,123),User(ELWOOD,50)),bye)
Update: In response to:
Is it possible to make this not compile when a product doesn't contain a value to update
Yes it is most definitely possible. We could alter the ProductUpdater
type class but in this case I find it much easier to introduce a separate type class ProductContainsType
as an evidence that a given product P
contains at least one element of type A
:
scala> :paste
// Entering paste mode (ctrl-D to finish)
@annotation.implicitNotFound("Product ${P} does not contain type ${A}")
abstract sealed class ProductContainsType[P,A]
trait LowPriorityProductContainsType {
implicit def compositeProductContainsTypeInRightPart[L, R, A](
implicit rightContainsType: ProductContainsType[R, A]
): ProductContainsType[L & R, A] = null
}
object ProductContainsType extends LowPriorityProductContainsType {
implicit def simpleProductContainsType[A]: ProductContainsType[A,A] = null
implicit def compositeProductContainsTypeInLeftPart[L, R, A](
implicit leftContainsType: ProductContainsType[L, A]
): ProductContainsType[L & R, A] = null
}
// Exiting paste mode, now interpreting.
Now we can define our stricter update
method:
def strictUpdate[A,P](product: P)(f: A => A)(
implicit
updater: ProductUpdater[P,A],
containsType: ProductContainsType[P,A]
): P = updater(product, f)
Let's see:
scala> strictUpdate(p){ s: String => s.toUpperCase }
res21: &[&[&[String,Int],User],String] = &(&(&(HELLO,123),User(Elwood,25)),BYE)
scala> strictUpdate(p){ s: Symbol => Symbol(s.name.toUpperCase) }
<console>:19: error: Product &[&[&[String,Int],User],String] does not contain type Symbol
strictUpdate(p){ s: Symbol => Symbol(s.name.toUpperCase) }
Not an optimal variant, seems to me @TravisBrown or @MilesSabin can provide more complete answer.
In examples we will use shapeless 2.2.5
.
So we can represent the necessary type as a HList
(no arity problem). As it is a HList
it is possible to apply a Poly
function:
trait A
def aFunc(a: A) = a
trait lowPriority extends Poly1 {
implicit def default[T] = at[T](poly.identity)
}
object polyApplyToTypeA extends lowPriority {
implicit def caseA = at[A](aFunc(_))
}
list.map(polyApplyToTypeA) //> applies only to type A
That was the first approach, using it we should use only special Poly
functions (it is possible to generate them), actually, that's a problem.
The second approach is to define an own function, which has a bit difficult logic:
def applyToType[L <: HList, P <: HList, PO <: HList, S <: HList, F]
(fun: F => F, l: L)
(implicit partition: Partition.Aux[L, F, P, S],
tt: ToTraversable.Aux[P, List, F],
ft: FromTraversable[P],
p: Prepend.Aux[S, P, PO],
a: Align[PO, L]): L =
(l.filterNot[F] ::: l.filter[F].toList[F].map(fun).toHList[P].get).align[L]
This function filters HList
by a type, converts it to a List
, applies our function, and converts it back to HList
, also aligns types, in order not to change HList
type alignment. Works as expected. Full example here: https://gist.github.com/pomadchin/bf46e21cb180c2a81664
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With