Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Image edge smoothing with opencv

I am trying to smooth output image edges using opencv framework, I am trying following steps. Steps took from here https://stackoverflow.com/a/17175381/790842

int lowThreshold = 10.0;
int ratio = 3;
int kernel_size = 3;

Mat src_gray,detected_edges,dst,blurred;

/// Convert the image to grayscale
cvtColor( result, src_gray, CV_BGR2GRAY );

/// Reduce noise with a kernel 3x3
cv::blur( src_gray, detected_edges, cv::Size(5,5) );

/// Canny detector
cv::Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );

//Works fine upto here I am getting perfect edge mask    

cv::dilate(detected_edges, blurred, result);

//I get Assertion failed (src.channels() == 1 && func != 0) in countNonZero ERROR while doing dilate

result.copyTo(blurred, blurred);

cv::blur(blurred, blurred, cv::Size(3.0,3.0));

blurred.copyTo(result, detected_edges);

UIImage *image = [UIImageCVMatConverter UIImageFromCVMat:result];

I want help whether if I am going in right way, or what am I missing?

Thanks for any suggestion and help.

Updated:

I have got an image like below got from grabcut algorithm, now I want to apply edge smoothening to the image, as you can see the image is not smooth. enter image description here

like image 571
iphonic Avatar asked Feb 15 '14 09:02

iphonic


People also ask

How do I smooth the edges of an image in OpenCV?

You can do that in Python/OpenCV with the help of Skimage by blurring the binary image. Then apply a one-sided clip. You will have to adjust the amount of blur for the degree of aliasing in the image.

How do I smooth an image in Python?

To smoothen an image with a custom-made kernel we are going to use a function called filter2D() which basically helps us to convolve a custom-made kernel with an image to achieve different image filters like sharpening and blurring and more.

What is cv2 medianBlur?

Here, the function cv2. medianBlur() computes the median of all the pixels under the kernel window and the central pixel is replaced with this median value. This is highly effective in removing salt-and-pepper noise.


1 Answers

Do you want to get something like this?

enter image description here

If yes, then here is the code:

#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

int main(int argc, char **argv)
{
    cv::namedWindow("result");
    Mat img=imread("TestImg.png");
    Mat whole_image=imread("D:\\ImagesForTest\\lena.jpg");
    whole_image.convertTo(whole_image,CV_32FC3,1.0/255.0);
    cv::resize(whole_image,whole_image,img.size());
    img.convertTo(img,CV_32FC3,1.0/255.0);
    
    Mat bg=Mat(img.size(),CV_32FC3);
    bg=Scalar(1.0,1.0,1.0);

    // Prepare mask
    Mat mask;
    Mat img_gray;
    cv::cvtColor(img,img_gray,cv::COLOR_BGR2GRAY);
    img_gray.convertTo(mask,CV_32FC1);
    threshold(1.0-mask,mask,0.9,1.0,cv::THRESH_BINARY_INV);

    cv::GaussianBlur(mask,mask,Size(21,21),11.0);
    imshow("result",mask);
    cv::waitKey(0);


        // Reget the image fragment with smoothed mask
    Mat res;

    vector<Mat> ch_img(3);
    vector<Mat> ch_bg(3);
    cv::split(whole_image,ch_img);
    cv::split(bg,ch_bg);
    ch_img[0]=ch_img[0].mul(mask)+ch_bg[0].mul(1.0-mask);
    ch_img[1]=ch_img[1].mul(mask)+ch_bg[1].mul(1.0-mask);
    ch_img[2]=ch_img[2].mul(mask)+ch_bg[2].mul(1.0-mask);
    cv::merge(ch_img,res);
    cv::merge(ch_bg,bg);

    imshow("result",res);
    cv::waitKey(0);
    cv::destroyAllWindows();
}

And I think this link will be interestiong for you too: Poisson Blending

like image 174
Andrey Smorodov Avatar answered Sep 30 '22 14:09

Andrey Smorodov