I have this method that takes an image and converts it into a tensor. I am invoking it in a loop and the execution time of the conversion starts small and keep growing.
def read_tensor_from_image_file(file_name, input_height=299, input_width=299, input_mean=0, input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
How do I optimize this?
The problem is almost certainly due to the use of the same default tf.Graph
across many calls to your read_tensor_from_image_file()
function. The easiest way to fix this is to add a with tf.Graph().as_default():
block around the function body, as follows:
def read_tensor_from_image_file(file_name, input_height=299, input_width=299, input_mean=0, input_std=255):
with tf.Graph().as_default():
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
With this change, each call to the function will create a new graph, rather than adding nodes the default graph (which would then grow over time, leaking memory, and taking longer to start each time you use it).
A more efficient version would use a tf.placeholder()
for the filename, construct a single graph, and move the for loop inside the TensorFlow session. Something like the following would work:
def read_tensors_from_image_files(file_names, input_height=299, input_width=299, input_mean=0, input_std=255):
with tf.Graph().as_default():
input_name = "file_reader"
output_name = "normalized"
file_name_placeholder = tf.placeholder(tf.string, shape=[])
file_reader = tf.read_file(file_name_placeholder, input_name)
image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
with tf.Session() as sess:
for file_name in file_names:
yield sess.run(normalized, {file_name_placeholder: file_name})
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With