I tried to load a small dataset on local Spark when this exception is thrown when I used count()
in PySpark (take()
seems working). I tried to search about this issue but got no luck in figuring out why. It seems something is wrong with the partition of RDD. Any ideas? Thank you in advance!
sc.stop()
sc = SparkContext("local[4]", "temp")
testfile1 = sc.textFile(localpath('part-00000-Copy1.xml'))
testfile1.filter(lambda x: x.strip().encode('utf-8').startswith(b'<row')).take(1) ## take function seems working
and this is what the data looks like:
[' <row AcceptedAnswerId="15" AnswerCount="5" Body="<p>How should I elicit prior distributions from experts when fitting a Bayesian model?</p> " CommentCount="1" CreationDate="2010-07-19T19:12:12.510" FavoriteCount="17" Id="1" LastActivityDate="2010-09-15T21:08:26.077" OwnerUserId="8" PostTypeId="1" Score="26" Tags="<bayesian><prior><elicitation>" Title="Eliciting priors from experts" ViewCount="1457" />']
this is the problem:
test1 = testfile1.filter(lambda x: (x.strip().encode('utf-8').startswith(b'<row'))).filter(lambda x: x is not None)
test1.count()
here is the exception:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-34-d7626ed81f56> in <module>()
----> 1 test1.count()
/usr/local/lib/python3.6/site-packages/pyspark/rdd.py in count(self)
1039 3
1040 """
-> 1041 return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
1042
1043 def stats(self):
/usr/local/lib/python3.6/site-packages/pyspark/rdd.py in sum(self)
1030 6.0
1031 """
-> 1032 return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
1033
1034 def count(self):
/usr/local/lib/python3.6/site-packages/pyspark/rdd.py in fold(self, zeroValue, op)
904 # zeroValue provided to each partition is unique from the one provided
905 # to the final reduce call
--> 906 vals = self.mapPartitions(func).collect()
907 return reduce(op, vals, zeroValue)
908
/usr/local/lib/python3.6/site-packages/pyspark/rdd.py in collect(self)
807 """
808 with SCCallSiteSync(self.context) as css:
--> 809 port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
810 return list(_load_from_socket(port, self._jrdd_deserializer))
811
/usr/local/lib/python3.6/site-packages/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
/usr/local/lib/python3.6/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: java.lang.IllegalArgumentException
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.spark.util.ClosureCleaner$.getClassReader(ClosureCleaner.scala:46)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:443)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:426)
at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103)
at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
at org.apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:426)
at org.apache.xbean.asm5.ClassReader.a(Unknown Source)
at org.apache.xbean.asm5.ClassReader.b(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:257)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:256)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:256)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:156)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2294)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2068)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2094)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:467)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:564)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.base/java.lang.Thread.run(Thread.java:844)
~~~~~~~~~~~~
Update:
So I tried to create a minimal example in PySpark, and the issue of count()
still exists. I was wondering if this issue is related to the configuration of Spark in my jupyter notebook. Here's a minimal example:
import pyspark
from pyspark import SparkContext
import findspark
findspark.init()
import random
sc = pyspark.SparkContext(appName="Pi")
num_samples = 100000000
def inside(p):
x, y = random.random(), random.random()
return x*x + y*y < 1
sc.parallelize(range(0, num_samples)).filter(inside).take(10)
And here's the output:
[0, 1, 3, 4, 7, 9, 11, 12, 13, 14]
And do the count()
again:
sc.parallelize(range(0, num_samples)).filter(inside).count()
And the output looks similar to the previous example:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-23-5588c6957b1d> in <module>()
----> 1 sc.parallelize(range(0, num_samples)).filter(inside).count()
/usr/local/lib/python3.6/site-packages/pyspark/rdd.py in count(self)
1039 3
1040 """
-> 1041 return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
1042
1043 def stats(self):
/usr/local/lib/python3.6/site-packages/pyspark/rdd.py in sum(self)
1030 6.0
1031 """
-> 1032 return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
1033
1034 def count(self):
/usr/local/lib/python3.6/site-packages/pyspark/rdd.py in fold(self, zeroValue, op)
904 # zeroValue provided to each partition is unique from the one provided
905 # to the final reduce call
--> 906 vals = self.mapPartitions(func).collect()
907 return reduce(op, vals, zeroValue)
908
/usr/local/lib/python3.6/site-packages/pyspark/rdd.py in collect(self)
807 """
808 with SCCallSiteSync(self.context) as css:
--> 809 port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
810 return list(_load_from_socket(port, self._jrdd_deserializer))
811
/usr/local/lib/python3.6/site-packages/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
/usr/local/lib/python3.6/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: java.lang.IllegalArgumentException
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.spark.util.ClosureCleaner$.getClassReader(ClosureCleaner.scala:46)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:443)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:426)
at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103)
at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
at org.apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:426)
at org.apache.xbean.asm5.ClassReader.a(Unknown Source)
at org.apache.xbean.asm5.ClassReader.b(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:257)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:256)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:256)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:156)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2294)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2068)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2094)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:467)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:564)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.base/java.lang.Thread.run(Thread.java:844)
One thing that I noticed is that when I run PySpark over jupyter notebook, the terminal shows some WARNING:
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.hadoop.security.authentication.util.KerberosUtil (file:/usr/local/lib/python3.6/site-packages/pyspark/jars/hadoop-auth-2.7.3.jar) to method sun.security.krb5.Config.getInstance()
WARNING: Please consider reporting this to the maintainers of org.apache.hadoop.security.authentication.util.KerberosUtil
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
18/01/15 14:05:35 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
And a google search revealed this post talked about the last WARNING.
Are you using Java 9? There are so many issues using Java9 with Apache projects now.
If that is the case and this is a Mac OS, do the following:
cd /usr/libexec
./java_home -V
And you will be able to see the java versions you have. Pick up an older version as your new JAVA_HOME
.
export JAVA_HOME="/Library/Java/JavaVirtualMachines/jdk1.8.{YourVersion}.jdk/Contents/Home"
If this works (I am not sure because information is missing), add the export
command to your profile init script.
Had this trouble for 3 hours and in the end, What worked for me is to switch to Spark 2.2.0 instead of Spark 2.2.1, Give it a try.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With