I have a dataframe and I'd like to binarize every data point in the first 56 columns on the condition that if the value is greater than 0 then it gets set to 1, otherwise it is set to 0. Is there an easy way to do this?
An approach using pmin
and pmax
. (not really recommended)
pmin(pmax(m[,2:5], 0),1)
But it allows be to add some benchmarking
ag <- function() ifelse(m[,2:5] > 0,1,0)
mn <- function()pmin(pmax(m[,2:5], 0),1)
am <- function() (m[, 2:5] > 0) + 0
am2 <- function() as.numeric((m[, 2:5] > 0))
library(microbenchmark)
microbenchmark(ag(),mn(), am(), am2())
## Unit: microseconds
## expr min lq median uq max neval
## ag() 19.888 20.712 21.9375 22.6430 39.548 100
## mn() 50.135 51.172 52.2530 53.1055 113.854 100
## am() 3.076 3.406 4.1755 4.6030 7.912 100
## am2() 2.623 2.989 3.4640 4.0135 6.995 100
@AnandaMahto's solutions are the clear winners, with the as.numeric
approach even faster!
Using the vectorized ifelse
you can do :
m[,1:56] <- ifelse(m[,1:56] > 0,1,0)
For example, we can test this in small matrix :
m <- matrix(sample(c(-2,2),5*3,rep=T),ncol=5,nrow=3,byrow=T)
> m
[,1] [,2] [,3] [,4] [,5]
[1,] 2 2 2 2 -2
[2,] 2 2 -2 2 -2
[3,] 2 2 2 2 2
> m[,2:5] <- ifelse(m[,2:5] > 0,1,0)
> m
[,1] [,2] [,3] [,4] [,5]
[1,] 2 1 1 1 0
[2,] 2 1 0 1 0
[3,] 2 1 1 1 1
You can make use of the fact that TRUE
and FALSE
equate to "1" and "0" and do:
set.seed(1)
mydf <- data.frame(matrix(rnorm(100), nrow = 10))
mydf[, 1:5] <- (mydf[, 1:5] > 0) + 0
mydf
# X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
# 1 0 1 1 1 0 0.3981059 2.40161776 0.475509529 -0.5686687 -0.5425200
# 2 1 1 1 0 0 -0.6120264 -0.03924000 -0.709946431 -0.1351786 1.2078678
# 3 0 0 1 1 1 0.3411197 0.68973936 0.610726353 1.1780870 1.1604026
# 4 1 0 0 0 1 -1.1293631 0.02800216 -0.934097632 -1.5235668 0.7002136
# 5 1 1 1 0 0 1.4330237 -0.74327321 -1.253633400 0.5939462 1.5868335
# 6 0 0 0 0 0 1.9803999 0.18879230 0.291446236 0.3329504 0.5584864
# 7 1 0 0 0 1 -0.3672215 -1.80495863 -0.443291873 1.0630998 -1.2765922
# 8 1 1 0 0 1 -1.0441346 1.46555486 0.001105352 -0.3041839 -0.5732654
# 9 1 1 0 1 0 0.5697196 0.15325334 0.074341324 0.3700188 -1.2246126
# 10 0 1 1 1 1 -0.1350546 2.17261167 -0.589520946 0.2670988 -0.4734006
The idea of +0
is simply to force the logical values of TRUE
and FALSE
to their numeric equivalent. If you are working on all the columns in a matrix and you used as.numeric(mydf > 0)
, you would have to re-convert the resulting vector to a matrix. However, in this case, this works perfectly well (as pointed out by @Dason).
mydf[, 1:5] <- as.numeric(mydf[, 1:5] > 0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With