Here's a simple example of what I'm trying to do:
CREATE TABLE daily_factors (
factor_date date,
factor_value numeric(3,1));
CREATE TABLE customer_date_ranges (
customer_id int,
date_from date,
date_to date);
INSERT INTO
daily_factors
SELECT
t.factor_date,
(random() * 10 + 30)::numeric(3,1)
FROM
generate_series(timestamp '20170101', timestamp '20210211', interval '1 day') AS t(factor_date);
WITH customer_id AS (
SELECT generate_series(1, 100000) AS customer_id),
date_from AS (
SELECT
customer_id,
(timestamp '20170101' + random() * (timestamp '20201231' - timestamp '20170101'))::date AS date_from
FROM
customer_id)
INSERT INTO
customer_date_ranges
SELECT
d.customer_id,
d.date_from,
(d.date_from::timestamp + random() * (timestamp '20210211' - d.date_from::timestamp))::date AS date_to
FROM
date_from d;
So I'm basically making two tables:
Then I want to add up the factors for each customer in their date range, and take the average value.
SELECT
cd.customer_id,
AVG(df.factor_value) AS average_value
FROM
customer_date_ranges cd
INNER JOIN daily_factors df ON df.factor_date BETWEEN cd.date_from AND cd.date_to
GROUP BY
cd.customer_id;
Having a non-equi join on a date range is never going to be pretty, but is there any way to speed this up?
The only index I could think of was this one:
CREATE INDEX performance_idx ON daily_factors (factor_date);
It makes a tiny difference to the execution time. When I run this locally I'm seeing around 32 seconds with no index, and around 28s with the index.
I can see that this is a massive bottleneck in the system I'm building, but I can't think of any way to make things faster. The ideas I did have were:
Any other suggestions?
The classic way to deal with this is to store running sums of factor_value, not (or in addition to) individual values. Then you just look up the running sum at the two end points (actually at the end, and one before the start), and take the difference. And of course divide by the count, to turn it into an average. I've never done this inside a database, but there is no reason it can't be done there.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With