I have a vector<bool>
and I'd like to zero it out. I need the size to stay the same.
The normal approach is to iterate over all the elements and reset them. However, vector<bool>
is a specially optimized container that, depending on implementation, may store only one bit per element. Is there a way to take advantage of this to clear the whole thing efficiently?
bitset
, the fixed-length variant, has the set
function. Does vector<bool>
have something similar?
There seem to be a lot of guesses but very few facts in the answers that have been posted so far, so perhaps it would be worthwhile to do a little testing.
#include <vector>
#include <iostream>
#include <time.h>
int seed(std::vector<bool> &b) {
srand(1);
for (int i = 0; i < b.size(); i++)
b[i] = ((rand() & 1) != 0);
int count = 0;
for (int i = 0; i < b.size(); i++)
if (b[i])
++count;
return count;
}
int main() {
std::vector<bool> bools(1024 * 1024 * 32);
int count1= seed(bools);
clock_t start = clock();
bools.assign(bools.size(), false);
double using_assign = double(clock() - start) / CLOCKS_PER_SEC;
int count2 = seed(bools);
start = clock();
for (int i = 0; i < bools.size(); i++)
bools[i] = false;
double using_loop = double(clock() - start) / CLOCKS_PER_SEC;
int count3 = seed(bools);
start = clock();
size_t size = bools.size();
bools.clear();
bools.resize(size);
double using_clear = double(clock() - start) / CLOCKS_PER_SEC;
int count4 = seed(bools);
start = clock();
std::fill(bools.begin(), bools.end(), false);
double using_fill = double(clock() - start) / CLOCKS_PER_SEC;
std::cout << "Time using assign: " << using_assign << "\n";
std::cout << "Time using loop: " << using_loop << "\n";
std::cout << "Time using clear: " << using_clear << "\n";
std::cout << "Time using fill: " << using_fill << "\n";
std::cout << "Ignore: " << count1 << "\t" << count2 << "\t" << count3 << "\t" << count4 << "\n";
}
So this creates a vector, sets some randomly selected bits in it, counts them, and clears them (and repeats). The setting/counting/printing is done to ensure that even with aggressive optimization, the compiler can't/won't optimize out our code to clear the vector.
I found the results interesting, to say the least. First the result with VC++:
Time using assign: 0.141
Time using loop: 0.068
Time using clear: 0.141
Time using fill: 0.087
Ignore: 16777216 16777216 16777216 16777216
So, with VC++, the fastest method is what you'd probably initially think of as the most naive -- a loop that assigns to each individual item. With g++, the results are just a tad different though:
Time using assign: 0.002
Time using loop: 0.08
Time using clear: 0.002
Time using fill: 0.001
Ignore: 16777216 16777216 16777216 16777216
Here, the loop is (by far) the slowest method (and the others are basically tied -- the 1 ms difference in speed isn't really repeatable).
For what it's worth, in spite of this part of the test showing up as much faster with g++, the overall times were within 1% of each other (4.944 seconds for VC++, 4.915 seconds for g++).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With