void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
int *ret;
ret = buffer1 + 12;
(*ret) += 8;//why is it 8??
}
void main() {
int x;
x = 0;
function(1,2,3);
x = 1;
printf("%d\n",x);
}
The above demo is from here:
http://insecure.org/stf/smashstack.html
But it's not working here:
D:\test>gcc -Wall -Wextra hw.cpp && a.exe
hw.cpp: In function `void function(int, int, int)':
hw.cpp:6: warning: unused variable 'buffer2'
hw.cpp: At global scope:
hw.cpp:4: warning: unused parameter 'a'
hw.cpp:4: warning: unused parameter 'b'
hw.cpp:4: warning: unused parameter 'c'
1
And I don't understand why it's 8 though the author thinks:
A little math tells us the distance is 8 bytes.
My gdb dump as called:
Dump of assembler code for function main:
0x004012ee <main+0>: push %ebp
0x004012ef <main+1>: mov %esp,%ebp
0x004012f1 <main+3>: sub $0x18,%esp
0x004012f4 <main+6>: and $0xfffffff0,%esp
0x004012f7 <main+9>: mov $0x0,%eax
0x004012fc <main+14>: add $0xf,%eax
0x004012ff <main+17>: add $0xf,%eax
0x00401302 <main+20>: shr $0x4,%eax
0x00401305 <main+23>: shl $0x4,%eax
0x00401308 <main+26>: mov %eax,0xfffffff8(%ebp)
0x0040130b <main+29>: mov 0xfffffff8(%ebp),%eax
0x0040130e <main+32>: call 0x401b00 <_alloca>
0x00401313 <main+37>: call 0x4017b0 <__main>
0x00401318 <main+42>: movl $0x0,0xfffffffc(%ebp)
0x0040131f <main+49>: movl $0x3,0x8(%esp)
0x00401327 <main+57>: movl $0x2,0x4(%esp)
0x0040132f <main+65>: movl $0x1,(%esp)
0x00401336 <main+72>: call 0x4012d0 <function>
0x0040133b <main+77>: movl $0x1,0xfffffffc(%ebp)
0x00401342 <main+84>: mov 0xfffffffc(%ebp),%eax
0x00401345 <main+87>: mov %eax,0x4(%esp)
0x00401349 <main+91>: movl $0x403000,(%esp)
0x00401350 <main+98>: call 0x401b60 <printf>
0x00401355 <main+103>: leave
0x00401356 <main+104>: ret
0x00401357 <main+105>: nop
0x00401358 <main+106>: add %al,(%eax)
0x0040135a <main+108>: add %al,(%eax)
0x0040135c <main+110>: add %al,(%eax)
0x0040135e <main+112>: add %al,(%eax)
End of assembler dump.
Dump of assembler code for function function:
0x004012d0 <function+0>: push %ebp
0x004012d1 <function+1>: mov %esp,%ebp
0x004012d3 <function+3>: sub $0x38,%esp
0x004012d6 <function+6>: lea 0xffffffe8(%ebp),%eax
0x004012d9 <function+9>: add $0xc,%eax
0x004012dc <function+12>: mov %eax,0xffffffd4(%ebp)
0x004012df <function+15>: mov 0xffffffd4(%ebp),%edx
0x004012e2 <function+18>: mov 0xffffffd4(%ebp),%eax
0x004012e5 <function+21>: movzbl (%eax),%eax
0x004012e8 <function+24>: add $0x5,%al
0x004012ea <function+26>: mov %al,(%edx)
0x004012ec <function+28>: leave
0x004012ed <function+29>: ret
In my case the distance should be - = 5,right?But it seems not working..
Why function
needs 56 bytes for local variables?( sub $0x38,%esp
)
As joveha pointed out, the value of EIP saved on the stack (return address) by the call
instruction needs to be incremented by 7 bytes (0x00401342
- 0x0040133b
= 7) in order to skip the x = 1;
instruction (movl $0x1,0xfffffffc(%ebp)
).
You are correct that 56 bytes are being reserved for local variables (sub $0x38,%esp
), so the missing piece is how many bytes past buffer1
on the stack is the saved EIP.
A bit of test code and inline assembly tells me that the magic value is 28 for my test. I cannot provide a definitive answer as to why it is 28, but I would assume the compiler is adding padding and/or stack canaries.
The following code was compiled using GCC 3.4.5 (MinGW) and tested on Windows XP SP3 (x86).
unsigned long get_ebp() {
__asm__("pop %ebp\n\t"
"movl %ebp,%eax\n\t"
"push %ebp\n\t");
}
void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
int *ret;
/* distance in bytes from buffer1 to return address on the stack */
printf("test %d\n", ((get_ebp() + 4) - (unsigned long)&buffer1));
ret = (int *)(buffer1 + 28);
(*ret) += 7;
}
void main() {
int x;
x = 0;
function(1,2,3);
x = 1;
printf("%d\n",x);
}
I could have just as easily used gdb to determine this value.
(compiled w/ -g
to include debug symbols)
(gdb) break function
...
(gdb) run
...
(gdb) p $ebp
$1 = (void *) 0x22ff28
(gdb) p &buffer1
$2 = (char (*)[5]) 0x22ff10
(gdb) quit
(0x22ff28
+ 4) - 0x22ff10
= 28
(ebp value + size of word) - address of buffer1 = number of bytes
In addition to Smashing The Stack For Fun And Profit, I would suggest reading some of the articles I mentioned in my answer to a previous question of yours and/or other material on the subject. Having a good understanding of exactly how this type of exploit works should help you write more secure code.
It's hard to predict what buffer1 + 12
really points to. Your compiler can put buffer1
and buffer2
in any location on the stack it desires, even going as far as to not save space for buffer2
at all. The only way to really know where buffer1
goes is to look at the assembler output of your compiler, and there's a good chance it would jump around with different optimization settings or different versions of the same compiler.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With