Question
Is there an easy solution to visualize the pairwise comparisons and their p.values (or just .
,*
,**
,***
) on a boxplot built with ggplot
?
An already built-in function (or something as convenient) would be great!
Below is an example one can work on..
Dummy data
require(ggplot2)
set.seed(11)
n=15
mu=1.2
d = data.frame(y=c(rnorm(n), rnorm(n), rnorm(n,mu), rnorm(n,mu)),x=rep(LETTERS[1:4],each=n))
Graph
ggplot(d, aes(y=y, x=x)) + geom_boxplot()
Statistical Analysis
m = aov(data=d, y~x)
anova(m)
# Analysis of Variance Table
# Response: y
# Df Sum Sq Mean Sq F value Pr(>F)
# x 3 34.074 11.358 16.558 8.021e-08 ***
# Residuals 56 38.414 0.686
TukeyHSD(m)$x
diff lwr upr p adj
B-A 0.1989620 -0.6018277 0.9997517 9.123300e-01
C-A 1.3858613 0.5850716 2.1866510 1.504711e-04
D-A 1.7658291 0.9650394 2.5666188 1.639309e-06
C-B 1.1868993 0.3861096 1.9876890 1.337608e-03
D-B 1.5668671 0.7660774 2.3676568 1.824795e-05
D-C 0.3799678 -0.4208219 1.1807575 5.941266e-01
Here are a couple of options:
# Add means and bootstrap confidence intervals to the boxplots
ggplot(d, aes(y=y, x=x)) +
geom_boxplot() +
stat_summary(fun.data=mean_cl_boot, geom="errorbar", colour="red", width=0.1) +
stat_summary(fun.y=mean, geom="point", colour="red")
# Anova
m = aov(data=d, y~x)
anova(m)
tky = as.data.frame(TukeyHSD(m)$x)
tky$pair = rownames(tky)
# Plot pairwise TukeyHSD comparisons and color by significance level
ggplot(tky, aes(colour=cut(`p adj`, c(0, 0.01, 0.05, 1),
label=c("p<0.01","p<0.05","Non-Sig")))) +
geom_hline(yintercept=0, lty="11", colour="grey30") +
geom_errorbar(aes(pair, ymin=lwr, ymax=upr), width=0.2) +
geom_point(aes(pair, diff)) +
labs(colour="")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With