Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to use the vgg-net when I load vgg16_weights.h5?

I use the VGG-16 Net by keras. This is the detail

my problem is how to use this net to fine-tuning, and must I use the image size which is 224*224 for this net? And I must use 1000 classes when I use this net? if I don't use 1000 classes, it cause the error

Exception: Layer shape (4096L, 10L) not compatible with weight shape (4096, 1000).

Asking for help, thank you!

like image 335
sky Avatar asked Apr 11 '16 16:04

sky


People also ask

Can VGG16 be used for object detection?

VGG16 is object detection and classification algorithm which is able to classify 1000 images of 1000 different categories with 92.7% accuracy. It is one of the popular algorithms for image classification and is easy to use with transfer learning.


1 Answers

I posted a detailed answer in this issue if you want to take a look. The following snippet will help you with the dimension of your last layer:

from keras.models import Sequential, Graph
from keras.layers import Convolution2D, ZeroPadding2D, MaxPooling2D
import keras.backend as K

img_width, img_height = 128, 128

# build the VGG16 network with our input_img as input
first_layer = ZeroPadding2D((1, 1), input_shape=(3, img_width, img_height))

model = Sequential()
model.add(first_layer)
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

# get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])

# load the weights

import h5py

weights_path = 'vgg16_weights.h5'

f = h5py.File(weights_path)
for k in range(f.attrs['nb_layers']):
    if k >= len(model.layers):
        # we don't look at the last (fully-connected) layers in the savefile
        break
    g = f['layer_{}'.format(k)]
    weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
    model.layers[k].set_weights(weights)
f.close()
print('Model loaded.')

# Here is what you want:

graph_m = Graph()
graph_m.add_input('my_inp', input_shape=(3, img_width, img_height))
graph_m.add_node(model, name='your_model', input='my_inp')
graph_m.add_node(Flatten(), name='Flatten', input='your_model')
graph_m.add_node(Dense(4096, activation='relu'), name='Dense1',      input='Flatten')
graph_m.add_node(Dropout(0.5), name='Dropout1', input='Dense1')
graph_m.add_node(Dense(4096, activation='relu'), name='Dense2',  input='Dropout1')
graph_m.add_node(Dropout(0.5), name='Dropout2', input='Dense2')
graph_m.add_node(Dense(10, activation='softmax'), name='Final', input='Dropout2')
graph_m.add_output(name='out1', input='Final')
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
graph_m.compile(optimizer=sgd, loss={'out1': 'categorical_crossentropy'})

Note that you could freeze the training of the feature extraction layers and only fine tune the last fully connected layers. From the doc, you just have to add trainable = False to freeze the training of a layer. Ex freezed:

...
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1', trainable=False))
...

Ex trainable:

...
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1',     trainable=True))
...

trainable is True by default so that something happens if you don't know about the feature...

like image 114
Thomas W. Boquet Avatar answered Oct 08 '22 09:10

Thomas W. Boquet