I have:
context = torch.tensor(context, dtype=torch.long, device=self.device)
context = context.unsqueeze(0)
generated = context
with torch.no_grad():
past_outputs = None
for i in trange(num_words):
print(i, num_words)
inputs = {"input_ids": generated}
outputs, past_outputs = self.model(
**inputs,
past=past_outputs
)
next_token_logits = outputs[
0, -1, :] / (temperature if temperature > 0 else 1.0)
# reptition penalty from CTRL
# (https://arxiv.org/abs/1909.05858)
for _ in set(generated.view(-1).tolist()):
next_token_logits[_] /= repetition_penalty
filtered_logits = top_k_top_p_filtering(
next_token_logits, top_k=top_k, top_p=top_p)
if temperature == 0: # greedy sampling:
next_token = torch.argmax(filtered_logits).unsqueeze(0)
else:
next_token = torch.multinomial(
F.softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat(
(generated, next_token.unsqueeze(0)), dim=1)
This works for the first iteration, but then I get an error for the next iteration:
File "/Users/shamoon/Sites/wordblot/packages/ml-server/generator.py", line 143, in sample_sequence
past=past_outputs
File "/Users/shamoon/.local/share/virtualenvs/ml-server-EdimT5-E/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
result = self.forward(*input, **kwargs)
File "/Users/shamoon/.local/share/virtualenvs/ml-server-EdimT5-E/lib/python3.7/site-packages/transformers/modeling_gpt2.py", line 601, in forward
output_hidden_states=output_hidden_states,
File "/Users/shamoon/.local/share/virtualenvs/ml-server-EdimT5-E/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
result = self.forward(*input, **kwargs)
File "/Users/shamoon/.local/share/virtualenvs/ml-server-EdimT5-E/lib/python3.7/site-packages/transformers/modeling_gpt2.py", line 470, in forward
position_embeds = self.wpe(position_ids)
File "/Users/shamoon/.local/share/virtualenvs/ml-server-EdimT5-E/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
result = self.forward(*input, **kwargs)
File "/Users/shamoon/.local/share/virtualenvs/ml-server-EdimT5-E/lib/python3.7/site-packages/torch/nn/modules/sparse.py", line 114, in forward
self.norm_type, self.scale_grad_by_freq, self.sparse)
File "/Users/shamoon/.local/share/virtualenvs/ml-server-EdimT5-E/lib/python3.7/site-packages/torch/nn/functional.py", line 1724, in embedding
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
IndexError: index out of range in self
Is there something I'm doing wrong?
I believe the problem is that context
contains integer values exceeding vocabulary size. My assumption is based on the last traceback line:
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
IndexError: index out of range in self
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With