I have two directories from which I want to read their text files and label them, but I don't know how to do this via TaggedDocument
. I thought it would work as TaggedDocument([Strings],[Labels]) but this doesn't work apparently.
This is my code:
from gensim import models
from gensim.models.doc2vec import TaggedDocument
import utilities as util
import os
from sklearn import svm
from nltk.tokenize import sent_tokenize
CogPath = "./FixedCog/"
NotCogPath = "./FixedNotCog/"
SamplePath ="./Sample/"
docs = []
tags = []
CogList = [p for p in os.listdir(CogPath) if p.endswith('.txt')]
NotCogList = [p for p in os.listdir(NotCogPath) if p.endswith('.txt')]
SampleList = [p for p in os.listdir(SamplePath) if p.endswith('.txt')]
for doc in CogList:
str = open(CogPath+doc,'r').read().decode("utf-8")
docs.append(str)
print docs
tags.append(doc)
print "###########"
print tags
print "!!!!!!!!!!!"
for doc in NotCogList:
str = open(NotCogPath+doc,'r').read().decode("utf-8")
docs.append(str)
tags.append(doc)
for doc in SampleList:
str = open(SamplePath + doc, 'r').read().decode("utf-8")
docs.append(str)
tags.append(doc)
T = TaggedDocument(docs,tags)
model = models.Doc2Vec(T,alpha=.025, min_alpha=.025, min_count=1,size=50)
and this is the error I get:
Traceback (most recent call last):
File "/home/farhood/PycharmProjects/word2vec_prj/doc2vec.py", line 34, in <module>
model = models.Doc2Vec(T,alpha=.025, min_alpha=.025, min_count=1,size=50)
File "/home/farhood/anaconda2/lib/python2.7/site-packages/gensim/models/doc2vec.py", line 635, in __init__
self.build_vocab(documents, trim_rule=trim_rule)
File "/home/farhood/anaconda2/lib/python2.7/site-packages/gensim/models/word2vec.py", line 544, in build_vocab
self.scan_vocab(sentences, progress_per=progress_per, trim_rule=trim_rule) # initial survey
File "/home/farhood/anaconda2/lib/python2.7/site-packages/gensim/models/doc2vec.py", line 674, in scan_vocab
if isinstance(document.words, string_types):
AttributeError: 'list' object has no attribute 'words'
TaggedDocument. Bases: gensim.models.doc2vec.TaggedDocument. Represents a document along with a tag, input document format for Doc2Vec . A single document, made up of words (a list of unicode string tokens) and tags (a list of tokens).
Doc2vec is an NLP tool for representing documents as a vector and is a generalizing of the word2vec method. In order to understand doc2vec, it is advisable to understand word2vec approach.
The input for a Doc2Vec model should be a list of TaggedDocument(['list','of','word'], [TAG_001]). A good practice is using the indexes of sentences as the tags. For example, to train a Doc2Vec model with two sentences (i.e. documents, paragraphs):
s1 = 'the quick fox brown fox jumps over the lazy dog'
s1_tag = '001'
s2 = 'i want to burn a zero-day'
s2_tag = '002'
docs = []
docs.append(TaggedDocument(words=s1.split(), tags=[s1_tag])
docs.append(TaggedDocument(words=s2.split(), tags=[s2_tag])
model = gensim.models.Doc2Vec(vector_size=300, window=5, min_count=5, workers=4, epochs=20)
model.build_vocab(docs)
print 'Start training process...'
model.train(docs, total_examples=model.corpus_count, epochs=model.iter)
#save model
model.save(model_path)
So I just experimented a bit and found this on github:
class TaggedDocument(namedtuple('TaggedDocument', 'words tags')):
"""
A single document, made up of `words` (a list of unicode string tokens)
and `tags` (a list of tokens). Tags may be one or more unicode string
tokens, but typical practice (which will also be most memory-efficient) is
for the tags list to include a unique integer id as the only tag.
Replaces "sentence as a list of words" from Word2Vec.
so I decided to change how I use the TaggedDocument function by generating a TaggedDocument class for each document, the important thing is that you have to pass the tags as a list.
for doc in CogList:
str = open(CogPath+doc,'r').read().decode("utf-8")
str_list = str.split()
T = TaggedDocument(str_list,[doc])
docs.append(T)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With