I have 2 distinctive groups of summaries. One is collected once per batch another one is collected once per epoch. How can I use merge_all_summaries(key='???')
to collect summaries in this two groups separately? Doing it manually is always an option but there seems to be a better way.
Illustration of how i think it should work:
# once per batch
tf.scalar_summary("loss", graph.loss)
tf.scalar_summary("batch_acc", batch_accuracy)
# once per epoch
gradients = tf.gradients(graph.loss, [W, D])
tf.histogram_summary("embedding/W", W, collections='per_epoch')
tf.histogram_summary("embedding/D", D, collections='per_epoch')
tf.merge_all_summaries() # -> (MergeSummary...) :)
tf.merge_all_summaries(key='per_epoch') # -> NONE :(
Problem solved. collections
parameter of a summary is supposed to be a list.
Solution:
# once per batch
tf.scalar_summary("loss", graph.loss)
tf.scalar_summary("batch_acc", batch_accuracy)
# once per epoch
tf.histogram_summary("embedding/W", W, collections=['per_epoch'])
tf.histogram_summary("embedding/D", D, collections=['per_epoch'])
tf.merge_all_summaries() # -> (MergeSummary...) :)
tf.merge_all_summaries(key='per_epoch') # -> (MergeSummary...) :)
Edit. Syntactical change in TF:
# once per batch
tf.summary.scalar("loss", graph.loss)
tf.summary.scalar("batch_acc", batch_accuracy)
# once per epoch
tf.summary.histogram("embedding/W", W, collections=['per_epoch'])
tf.summary.histogram("embedding/D", D, collections=['per_epoch'])
tf.summary.merge_all() # -> (MergeSummary...) :)
tf.summary.merge_all(key='per_epoch') # -> (MergeSummary...) :)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With