As an example of cross-validation without any preprocessing, I can do something like this:
tuned_params = [{"penalty" : ["l2", "l1"]}]
from sklearn.linear_model import SGDClassifier
SGD = SGDClassifier()
from sklearn.grid_search import GridSearchCV
clf = GridSearchCV(myClassifier, params, verbose=5)
clf.fit(x_train, y_train)
I would like to preprocess my data using something like
from sklearn import preprocessing
x_scaled = preprocessing.scale(x_train)
But it would not be a good idea to do this before setting the cross validation, because then the training and testing sets will be normalized together. How do I setup the cross validation to preprocess the corresponding training and test sets separately on each run?
Per the documentation, if you employ Pipeline, this can be done for you. From the docs, just above section 3.1.1.1, emphasis mine:
Just as it is important to test a predictor on data held-out from training, preprocessing (such as standardization, feature selection, etc.) and similar data transformations similarly should be learnt from a training set and applied to held-out data for prediction [...] A Pipeline makes it easier to compose estimators, providing this behavior under cross-validation[.]
More relevant information on pipelines available here.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With