I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.
For example, I have:
Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40
This should result in:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
The best I can do is unique combinations:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1
I tried:
df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')
But that is just the unique counts.
Using pandas.DataFrame.groupby
:
grouped_item = df.groupby('Cust_num')['Item']
subsets = grouped_item.apply(lambda x: set(x)).tolist()
Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
combo = grouped_item.apply(lambda x:','.join(x))
combo = combo.reset_index()
combo['Count']=Count
Output:
Cust_num Item Count
0 Cust1 Shirt1,Shirt2,Shorts1 1
1 Cust2 Shirt1,Shorts1 2
Late answer, but you can use:
df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns={"Cust_num": "Count"})
df['Count'] = df['Count'].str.replace(r'Cust','')
combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
I think you need to create a combination of items first.
How to get all possible combinations of a list’s elements?
I used the function from Dan H's answer.
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
uq_items = df.Item.unique()
list(all_subsets(uq_items))
[(),
('Shirt1',),
('Shirt2',),
('Shorts1',),
('Shirt1', 'Shirt2'),
('Shirt1', 'Shorts1'),
('Shirt2', 'Shorts1'),
('Shirt1', 'Shirt2', 'Shorts1')]
And use groupby
each customer to get their items combination.
ls = []
for _, d in df.groupby('Cust_num', group_keys=False):
# Get all possible subset of items
pi = np.array(list(all_subsets(d.Item)))
# Fliter only > 1
ls.append(pi[[len(l) > 1 for l in pi]])
Then convert to Series
and use value_counts()
.
pd.Series(np.concatenate(ls)).value_counts()
(Shirt1, Shorts1) 2
(Shirt2, Shorts1) 1
(Shirt1, Shirt2, Shorts1) 1
(Shirt1, Shirt2) 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With