I have know my current position({lat:x,lon:y}) and I know my speed and direction angle; How to predict next position at next time?
The time difference between each longitude (each degree) is 4 minutes. So if it is 12 noon at Greenwich (0 degree), it would be 12:04 pm at 1 degree meridian and so on. In India, the standard meridian is 82-and-half degree.
latitude of second point = la2 = asin(sin la1 * cos Ad + cos la1 * sin Ad * cos θ), and. longitude of second point = lo2 = lo1 + atan2(sin θ * sin Ad * cos la1 , cos Ad – sin la1 * sin la2)
Start with your line of latitude, writing the degrees, then the minutes, then the seconds. Then, add the North or South as the direction. Then, write a comma followed by your line of longitude in degrees, then minutes, then seconds. Then, add East or West as the direction.
First, calculate the distance you will travel based on your current speed and your known time interval ("next time"):
distance = speed * time
Then you can use this formula to calculate your new position (lat2/lon2):
lat2 =asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(tc))
dlon=atan2(sin(tc)*sin(d)*cos(lat1),cos(d)-sin(lat1)*sin(lat2))
lon2=mod( lon1-dlon +pi,2*pi )-pi
For an implementation in Javascript, see the function LatLon.prototype.destinationPoint
on this page
Update for those wishing a more fleshed-out implementation of the above, here it is in Javascript:
/**
* Returns the destination point from a given point, having travelled the given distance
* on the given initial bearing.
*
* @param {number} lat - initial latitude in decimal degrees (eg. 50.123)
* @param {number} lon - initial longitude in decimal degrees (e.g. -4.321)
* @param {number} distance - Distance travelled (metres).
* @param {number} bearing - Initial bearing (in degrees from north).
* @returns {array} destination point as [latitude,longitude] (e.g. [50.123, -4.321])
*
* @example
* var p = destinationPoint(51.4778, -0.0015, 7794, 300.7); // 51.5135°N, 000.0983°W
*/
function destinationPoint(lat, lon, distance, bearing) {
var radius = 6371e3; // (Mean) radius of earth
var toRadians = function(v) { return v * Math.PI / 180; };
var toDegrees = function(v) { return v * 180 / Math.PI; };
// sinφ2 = sinφ1·cosδ + cosφ1·sinδ·cosθ
// tanΔλ = sinθ·sinδ·cosφ1 / cosδ−sinφ1·sinφ2
// see mathforum.org/library/drmath/view/52049.html for derivation
var δ = Number(distance) / radius; // angular distance in radians
var θ = toRadians(Number(bearing));
var φ1 = toRadians(Number(lat));
var λ1 = toRadians(Number(lon));
var sinφ1 = Math.sin(φ1), cosφ1 = Math.cos(φ1);
var sinδ = Math.sin(δ), cosδ = Math.cos(δ);
var sinθ = Math.sin(θ), cosθ = Math.cos(θ);
var sinφ2 = sinφ1*cosδ + cosφ1*sinδ*cosθ;
var φ2 = Math.asin(sinφ2);
var y = sinθ * sinδ * cosφ1;
var x = cosδ - sinφ1 * sinφ2;
var λ2 = λ1 + Math.atan2(y, x);
return [toDegrees(φ2), (toDegrees(λ2)+540)%360-180]; // normalise to −180..+180°
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With