Yesterday I had problems with another boost functions but luckily you guys helped me to solve them. Today I would need to know how to use bisection function properly.
So here is how I think it should work but never the less it seems that I'm getting this also wrong. Okay so I would like to use:
template <class F, class T, class Tol>
std::pair<T, T>
bisect(
F f,
T min,
T max,
Tol tol);
from here but my problem is with tolerance because I don't know how to set it right. I've tried
double value = boost::math::tools::eps_tolerance<double>(0.00001);
and how to I return the value when the bisection has found ? Should the result be pair of numbers as std::pair in the function and after that just calculate min+max/2?
Thanks !
This is an example use of bisect
. Consider solving the equation x^2 - 3x + 1 = 0
:
struct TerminationCondition {
bool operator() (double min, double max) {
return abs(min - max) <= 0.000001;
}
};
struct FunctionToApproximate {
double operator() (double x) {
return x*x - 3*x + 1; // Replace with your function
}
};
// ...
using boost::math::tools::bisect;
double from = 0; // The solution must lie in the interval [from, to], additionally f(from) <= 0 && f(to) >= 0
double to = 1;
std::pair<double, double> result = bisect(FunctionToApproximate(), from, to, TerminationCondition());
double root = (result.first + result.second) / 2; // = 0.381966...
EDIT: Alternatively, this is how you can use it with custom functions:
double myF(double x) {
return x*x*x;
}
double otherF(double x) {
return log(abs(x));
}
// ...
std::pair<double, double> result1 = bisect(&myF, from, to, TerminationCondition());
std::pair<double, double> result2 = bisect(&otherF, 0.1, 1.1, TerminationCondition());
Note that bisect
also supports lambdas:
using boost::math::tools::bisect;
auto root = bisect
(
[](double x){return x;},
-1.0, 1.0,
[](double l, double r){return abs(l-r) < 1e-8;}
);
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With