I have multiple curves that differ in one parameter and which I want to plot in one figure. To distinguish them, I want to use one of matplotlib's colorbars. To do so I produce a list of colors depending on said parameter. Additionally, I want to add a colorbar to explain the colors that are used. I can easily do all of that. The problem is now, that I want to use only a part of the available colormap, as it gets too bright and thus barely visible above some threshold. But when I now choose the colors only in a subrange, I did not find a way to adjust the range of the displayed colorbar.
Here is a (nearly) minimal example of what I want to achieve:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(2, 1,
height_ratios=[1, 4]
)
ax = [plt.subplot(g) for g in gs]
parameterToColorBy = np.linspace(5, 10, 6, dtype=float)
maxColor = 0.85
colors = [plt.get_cmap("inferno")(i)
for i in np.linspace(0, maxColor, parameterToColorBy.shape[0])]
norm = mpl.colors.Normalize(parameterToColorBy[0],
parameterToColorBy[0]+
(parameterToColorBy[-1]-parameterToColorBy[0])/
maxColor)
cb = mpl.colorbar.ColorbarBase(ax[0],
cmap="inferno",
norm=norm,
ticks=parameterToColorBy,
orientation='horizontal')
ax[0].xaxis.set_ticks_position('top')
for p, c in zip(parameterToColorBy, colors):
ax[1].plot(np.arange(2)/p, c=c)
plt.show()
The result looks at follows:
I now want the colorbar to stop at 10. But if I just adjust the xlim
of the subplot by adding the line ax[0].set_xlim(0, maxColor)
, the colored part is adjusted correctly, but the surrounding box is messed up:
Alternatively, I found a function for colorbars set_clim
. But this only changes the normalization and does not seem to work as I want. Adding cb.set_clim(parameterToColorBy[0], parameterToColorBy[-1])
results in an changed colors but unchanged axis:
What I seem to need is either an appropriate way to adjust the limits of the displayed colorbar, or a way to create an own colorbar as a subset of an available colorbar. Is there any way to achieve one of these things?
You can truncate the colormap by using the truncate_colormap
function I have written in the code below. It creates a new matplotlib.colors.LinearSegmentedColormap
from an existing colormap.
Note that you then don't need to scale the Normalise
instance by maxColor
, and you need to use this new colormap instance when creating your colors
list and the colorbar
.
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.colors as mcolors
gs = gridspec.GridSpec(2, 1,
height_ratios=[1, 4]
)
ax = [plt.subplot(g) for g in gs]
parameterToColorBy = np.linspace(5, 10, 6, dtype=float)
def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=-1):
if n == -1:
n = cmap.N
new_cmap = mcolors.LinearSegmentedColormap.from_list(
'trunc({name},{a:.2f},{b:.2f})'.format(name=cmap.name, a=minval, b=maxval),
cmap(np.linspace(minval, maxval, n)))
return new_cmap
minColor = 0.00
maxColor = 0.85
inferno_t = truncate_colormap(plt.get_cmap("inferno"), minColor, maxColor)
colors = [inferno_t(i)
for i in np.linspace(0, 1, parameterToColorBy.shape[0])]
norm = mpl.colors.Normalize(parameterToColorBy[0],
parameterToColorBy[-1])
cb = mpl.colorbar.ColorbarBase(ax[0],
cmap=inferno_t,
norm=norm,
ticks=parameterToColorBy,
orientation='horizontal')
ax[0].xaxis.set_ticks_position('top')
for p, c in zip(parameterToColorBy, colors):
ax[1].plot(np.arange(2)/p, c=c)
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With