I have a numpy array, which has hundreds of elements which are capital letters, in no particular order
import numpy as np
abc_array = np.array(['B', 'D', 'A', 'F', 'H', 'I', 'Z', 'J', ...])
Each element in this numpy.ndarray
is a numpy.string_
.
I also have a "translation dictionary", with key/value pairs such that the capital letter corresponds to a city
transdict = {'A': 'Adelaide', 'B': 'Bombay', 'C': 'Cologne',...}
There are only 26 pairs in the dictionary transdict
, but there are hundreds of letters in the numpy array I must translate.
What is the most efficient way to do this?
I have considered using numpy.core.defchararray.replace(a, old, new, count=None)[source]
but this returns a ValueError
, as the numpy array is a different size that the dictionary keys/values.
AttributeError: 'numpy.ndarray' object has no attribute 'translate'
With brute-force NumPy broadcasting
-
idx = np.nonzero(transdict.keys() == abc_array[:,None])[1]
out = np.asarray(transdict.values())[idx]
With np.searchsorted
based searching and indexing -
sort_idx = np.argsort(transdict.keys())
idx = np.searchsorted(transdict.keys(),abc_array,sorter = sort_idx)
out = np.asarray(transdict.values())[sort_idx][idx]
Sample run -
In [1]: abc_array = np.array(['B', 'D', 'A', 'B', 'D', 'A', 'C'])
...: transdict = {'A': 'Adelaide', 'B': 'Bombay', 'C': 'Cologne', 'D': 'Delhi'}
...:
In [2]: idx = np.nonzero(transdict.keys() == abc_array[:,None])[1]
...: out = np.asarray(transdict.values())[idx]
...:
In [3]: out
Out[3]:
array(['Bombay', 'Delhi', 'Adelaide', 'Bombay', 'Delhi', 'Adelaide',
'Cologne'],
dtype='|S8')
In [4]: sort_idx = np.argsort(transdict.keys())
...: idx = np.searchsorted(transdict.keys(),abc_array,sorter = sort_idx)
...: out = np.asarray(transdict.values())[sort_idx][idx]
...:
In [5]: out
Out[5]:
array(['Bombay', 'Delhi', 'Adelaide', 'Bombay', 'Delhi', 'Adelaide',
'Cologne'],
dtype='|S8')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With