With the nice indexing methods in Pandas I have no problems extracting data in various ways. On the other hand I am still confused about how to change data in an existing DataFrame.
In the following code I have two DataFrames and my goal is to update values in a specific row in the first df from values of the second df. How can I achieve this?
import pandas as pd
df = pd.DataFrame({'filename' :  ['test0.dat', 'test2.dat'], 
                                  'm': [12, 13], 'n' : [None, None]})
df2 = pd.DataFrame({'filename' :  'test2.dat', 'n':16}, index=[0])
# this overwrites the first row but we want to update the second
# df.update(df2)
# this does not update anything
df.loc[df.filename == 'test2.dat'].update(df2)
print(df)
gives
   filename   m     n
0  test0.dat  12  None
1  test2.dat  13  None
[2 rows x 3 columns]
but how can I achieve this:
    filename   m     n
0  test0.dat  12  None
1  test2.dat  13  16
[2 rows x 3 columns]
                Using iloc() Function To Update The Value Of A Row A row or column can be updated or changed using the Python iloc() method by providing the index values for the same. Syntax: dataframe. iloc[index] = new value where, index = row number you want to update.
Using iloc() method to update the value of a row With the Python iloc() method, it is possible to change or update the value of a row/column by providing the index values of the same. In this example, we have updated the value of the rows 0, 1, 3 and 6 with respect to the first column i.e. 'Num' to 100.
So first of all, pandas updates using the index. When an update command does not update anything, check both left-hand side and right-hand side. If you don't update the indices to follow your identification logic, you can do something along the lines of
>>> df.loc[df.filename == 'test2.dat', 'n'] = df2[df2.filename == 'test2.dat'].loc[0]['n']
>>> df
Out[331]: 
    filename   m     n
0  test0.dat  12  None
1  test2.dat  13    16
If you want to do this for the whole table, I suggest a method I believe is superior to the previously mentioned ones: since your identifier is filename, set filename as your index, and then use update() as you wanted to. Both merge and the apply() approach contain unnecessary overhead:
>>> df.set_index('filename', inplace=True)
>>> df2.set_index('filename', inplace=True)
>>> df.update(df2)
>>> df
Out[292]: 
            m     n
filename           
test0.dat  12  None
test2.dat  13    16
                        In SQL, I would have do it in one shot as
update table1 set col1 = new_value where col1 = old_value
but in Python Pandas, we could just do this:
data = [['ram', 10], ['sam', 15], ['tam', 15]] 
kids = pd.DataFrame(data, columns = ['Name', 'Age']) 
kids
which will generate the following output :
    Name    Age
0   ram     10
1   sam     15
2   tam     15
now we can run:
kids.loc[kids.Age == 15,'Age'] = 17
kids
which will show the following output
Name    Age
0   ram     10
1   sam     17
2   tam     17
which should be equivalent to the following SQL
update kids set age = 17 where age = 15
                        If you have one large dataframe and only a few update values I would use apply like this:
import pandas as pd
df = pd.DataFrame({'filename' :  ['test0.dat', 'test2.dat'], 
                                  'm': [12, 13], 'n' : [None, None]})
data = {'filename' :  'test2.dat', 'n':16}
def update_vals(row, data=data):
    if row.filename == data['filename']:
        row.n = data['n']
    return row
df.apply(update_vals, axis=1)
                        Update null elements with value in the same location in other. Combines a DataFrame with other DataFrame using func to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two.
df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
df1.combine_first(df2)
     A    B
0  1.0  3.0
1  0.0  4.0
more information in this link
There are probably a few ways to do this, but one approach would be to merge the two dataframes together on the filename/m column, then populate the column 'n' from the right dataframe if a match was found. The n_x, n_y in the code refer to the left/right dataframes in the merge.
In[100] : df = pd.merge(df1, df2, how='left', on=['filename','m'])
In[101] : df
Out[101]: 
    filename   m   n_x  n_y
0  test0.dat  12  None  NaN
1  test2.dat  13  None   16
In[102] : df['n'] = df['n_y'].fillna(df['n_x'])
In[103] : df = df.drop(['n_x','n_y'], axis=1)
In[104] : df
Out[104]: 
    filename   m     n
0  test0.dat  12  None
1  test2.dat  13    16
                        If you want to put anything in the iith row, add square brackets:
df.loc[df.iloc[ii].name, 'filename'] = [{'anything': 0}]
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With