I work in web development, but I don't have a great understanding of network protocols. I recall hearing an analogy that TCP, HTTP, and SSL can be thought of as a series of nested envelopes around the actual request content.
I also have a fuzzy idea TCP consists of packets, which are verified on the other end. But I'm sort of picturing the HTTP request being chopped into packets, too...
So basically, I don't understand this stuff well at all. Can anybody give a good overview of this? Also, is there a beginner-friendly book or other resource that you'd recommend?
Transmission Control Protocol (TCP) Internet Protocol (IP) User Datagram Protocol (UDP) Post office Protocol (POP)
The protocols are used by the Data Link Layer include: ARP, CSLIP, HDLC, IEEE. 802.3, PPP, X-25, SLIP, ATM, SDLS and PLIP.
A network protocol is an established set of rules that determine how data is transmitted between different devices in the same network. Essentially, it allows connected devices to communicate with each other, regardless of any differences in their internal processes, structure or design.
Since I asked this question, I've learned more about this topic, so I'll take a crack at answering it myself.
The easiest way to picture the protocol stack is as a letter, wrapped in a series of envelopes. Each envelope has a different role in getting the letter to its recipient, and envelopes are added and removed as needed along the journey.
The letter itself is an application-layer request. For example, you've typed "StackOverflow.com" in your browser and pressed enter. Your browser needs to ask the StackOverflow server for its home page. So it writes a letter saying, "Dear StackOverflow, would you please send me your home page?"
If the writer of the letter is your browser, the recipient of the letter is the web server program running on StackOverflow. The browser wants the web server to "write back" with a response in the form of a web page. Both the browser and server are applications - programs running on specific computers.
Because browsers speak HTTP, that's what it uses to make the request: the letter says something like "GET http://stackoverflow.com". The browser also writes down any cookie information it got from StackOverflow last time ("remember me? You told me my login ID was X") and adds some miscellaneous labeled information called "headers" (things like "I'm Firefox" and "I can accept HTML or text" and "it's OK with me if you compress the content with gzip"). All that information will help the server know how to personalize or customize its response.
At that point, the browser is basically done. It hands this letter to the operating system and says, "would you please send this for me?" The OS says, "Sure." It then does some work to connect to StackOverflow (more on that in a minute), then tells the browser, "I'm working on it. By the way, here's a little mail bin I made for you, called a socket. When I hear back from StackOverflow, I'll put its letter in there and you can read it just like a file." The browser then happily awaits the response.
To send the request from the browser to StackOverflow, the operating system has to do several things.
First, it has to look up the address for StackOverflow.com - specifically, the IP address. It does this using DNS (which I won't go into here). Once it knows the IP address, it will know how to wrap the request in one of the "envelopes" called the IP layer.
Why do we need the IP layer? Well, once upon a time, we didn't.
Have you ever seen an old movie where someone makes a phone call by asking the operator to connect them? The operator would physically connect the wire from Person #1's house to the wire for Person #2's house. Before the protocol stack was invented, connecting computers was a lot like that phone call: you needed a dedicated wire from point to point.
So, for example, if the computer scientists at Stanford wanted to exchange data with the ones at Harvard, they'd pay a bunch of money to rent a dedicated wire between the two places (a "leased line"). Any data that went into one end came out reliably at the other end. However, this was very expensive: imagine paying for a separate line for every place you want to connect to!
People realized that this wouldn't scale up. We needed a way to have a network that was shared by all users, like a giant spiderweb of wires spread out all over the map. That way, each user would only need one connection to the network and could reach any other user through it.
But that presented a problem. If everyone's communications went on the same lines, how would the data get to the right place? Imagine a bunch of letters dumped on a conveyor belt. Obviously, every letter needs to be addressed to someone, or else they can't be delivered.
That's the basic idea of IP: every machine needs to have an IP address that uniquely identifies it. Messages are placed in IP packets, which are like envelopes with addresses and return addresses.
So, once the OS has looked up the IP address for Stackoverflow.com, it puts the HTTP request in an IP envelope. If it's a "long letter", too big for one envelope, the OS cuts it into pieces and puts it in several IP envelopes. Each envelope says something like "FROM: (your IP address); TO: (The Server's IP address." Like the HTTP request, the IP packet has some other miscellaneous header information, which we won't go into here, but the basic idea is just "to" and "from."
So, at this point, the letter is ready to go, right?
Not quite. This letter could easily get lost! See, with IP, we no longer have a dedicated line from place to place. If we did, we'd be sure that our letters were getting delivered: as long as the line wasn't broken, everything would go through.
But with IP, everyone's packets get dumped onto conveyor belts and carried along. The belts lead to little sorting stations, called "routers". If you imagine the routers like physical mail centers, you could picture one in, say, New York City.
"Here's a letter headed for Mexico City. I don't know exactly how to get there, but the station in Houston should be able to get it closer, so I'll send it there. Ah, here's a letter that's going to Atlanta. I'll send it to Charlotte; they should be able to forward it a step closer."
Generally this system works OK, but it's not as reliable as having your own dedicated line. Nearly anything could happen en route: a conveyor belt could break or catch fire, and everything on it could be lost. Or one could get bogged down for a while, so that its packets are delivered very late.
Besides that, because these conveyor belts and stations are used by everyone, nobody's letters get treated specially. So what happens if a router gets more letters than it can possibly handle? For a while, it can stack them in a corner (maybe in RAM), but eventually, it runs out of space.
What it does then may seem shocking: it starts throwing them away.
Yep. That's it. You might think that it would at least be kind enough to send back a note to you, saying, "sorry, we couldn't deliver your letter." But it doesn't. If you think about it, if the router is overwhelmed, it's probably because there's too much traffic on the lines already. Adding apology notes would only make the problem worse. So it throws away your packet and doesn't bother telling anyone.
Obviously, this is a problem for our HTTP request. We need it to get there, and we need the response to get back reliably, too.
To make sure it gets there, we want some kind of "delivery confirmation" service. For that, we'll wrap another envelope around our HTTP request before putting into IP packets. That layer is called TCP.
TCP stands for "transfer control protocol." It exists to control what would otherwise be a messy, error-prone delivery process.
As implied before, TCP lets us add some "delivery confirmation" to this messy delivery system. Before we wrap our HTTP request in IP packets, we first put it into TCP packets. Each one gets a number: packet 1 of 5, 2 of 5, etc. (The numbering scheme is actually more complicated and counts bytes rather than packets, but let's ignore that for now.)
The basic idea of TCP is this:
(Getting confirmations when things arrive at the other end is better than getting error reports when a router drops things along the way for a couple of reasons. One is that confirmations go back over a working connection, whereas errors would further clog a non-working connection. Another is that we don't have to trust the intermediary routers to do the right thing; the client and server are the ones who care most about this particular conversation, so they're the ones who take charge of being sure that it works.)
Besides making sure that all the data gets to the other end, TCP also makes sure that the received data gets put back into the right order before handing it up the stack, in case earlier packets got resent and arrived later, or packets in the middle took a longer route, or whatever.
That's basically it - having this kind of delivery confirmation makes the unreliable IP network reliable.
Why wasn't it built straight into IP?
Well, confirmation has a drawback: it makes things slower. If something is missed, it must be repeated. In some cases, that would be a waste of time, because what you really want is a real-time connection. For example, if you're having a phone conversation over IP, or you're playing a real-time game over the internet, you want to know what's happening right now, even if it means you miss a bit of what happened a second ago. If you stop to repeat things, you'll fall out of sync with everyone else. In cases like that, you can use a cousin of TCP called UDP, which doesn't re-send lost packets. UDP stands for "user datagram protocol", but many people think of it as "unreliable data protocol". That's not an insult; sometimes reliability is less important than staying current.
Since both of these are valid use cases, it makes sense that the IP protocol stayed neutral on the issue of reliability; those who use it can choose whether to add reliability or not.
Both TCP and UDP add one other important piece of information to the request: a port number.
Remember, our original request is comes from a browser and is going to a web server program. But the IP protocol only has addresses that specify computers, not the applications running on them. The machine with StackOverflow's web server may also have other server programs that are listening for requests: a database server, an FTP server, etc. When that machine gets the request, how will it know which program should handle it?
It will know because the TCP request has a port number on it. This is just a number, nothing fancy, but by convention, certain numbers are interpreted to mean certain things. For example, using a port number of 80 is a conventional way of saying "this is a request for a web server." Then the server machine's operating system will know to hand that request to the web server program and not, say, the FTP server program.
When the TCP packets start streaming back to your computer, they will also have a port number, to let your machine know which program to give the response to. That number will vary based on the socket that your machine created initially.
Wait, what's a socket?
Remember earlier when the browser asked the OS to send the request? The OS said it would set up a "mail bin" for any response it got back. That bin is called a socket.
You can think of a socket sort of like a file. A file is an interface that the OS provides. It says, "you can read and write data here, and I will take care of figuring out how to actually store it on the hard drive or USB key or whatever." The thing that uniquely identifies a file is the combination of path and filename. In other words, you can only have one file located in the same folder with the same name.
Similarly, a socket is an interface the OS provides. It says, "you can write requests here and read responses." The thing that uniquely identifies a socket is the combination of four things:
So, you can only have one socket on a system with the same combination of all of those. Notice that you could easily have several sockets open to the same destination IP and port - say, StackOverflow's web server - as long as they all have different source ports. The OS will guarantee that they do by choosing an arbitrary source port for each request, which is why you can have several tabs or several browsers all requesting the same web site simultaneously without anything getting confused; the packets coming back all say which port on your computer they're headed for, which lets the OS know "ah, this packet is for tab 3 in Firefox" or whatever.
We've been thinking of the protocols as a series of envelops wrapped around the letter. In our example, the letter was an HTTP request, which got wrapped in TCP, then in IP. The IP packets get sent to the right destination computer. That computer removes the IP "envelope" and finds a TCP packet inside. The TCP packet has a port number, which lets the operating system know which port to collect its information in. It replies saying that it got that packet, and it puts its contents (the HTTP request) into the correct socket for the appropriate program to read from. When that program writes a reponse to the socket, the OS sends it back to the requester.
So our "stack" is:
It's important to understand that this stack is totally customizable. All of these "protocols" are just standard ways of doing things. You can put anything you want inside of an IP packet if you think the receiving computer will know what to do with it, and you can put anything you want inside a TCP or UDP packet if you think the receiving application will know what to do with it.
You could even put something else inside your HTTP request. You could say that some JSON data in there is the "phone number exchange protocol," and as long as both ends know what to do with it, that's fine, and you've just added a higher-level protocol.
Of course, there's a limit to how "high" you can go in the stack - that is, you can put a smaller envelope inside HTTP, and a smaller one inside that, etc, but eventually you won't have any room to go smaller; you won't have any bits for actual content.
But you can easily go "lower" in the stack; you can wrap more "envelopes" around the existing ones.
Once common "envelope" to wrap around IP is Ethernet. For example, when your computer decides to send IP packets to Google, it wraps them up as we've described so far, but to send them, it gives them to your network card. The network card may then wrap the IP packets in Ethernet packets (or token ring packets, if you've got an antique setup), addressing them to your router and sending them there. Your router removes those Ethernet "envelopes", checks the IP address, decides who the next closest router is, wraps another Ethernet envelope addressed to that router, and sends the packet along.
Other protocols could be wrapped as well. Maybe two devices are only connected wirelessly, so they wrap their Ethernet packets in a Wi-Fi or Bluetooth or 4G protocol. Maybe your packets need to cross a village with no electricity, so someone physically prints the packets on paper with numbered pages, rides them across town on a bicycle, and scans them into another computer in the order of the page numbers. Voila! A print-to-OCR protocol. Or maybe, I don't know, TCP over carrier pigeon would be better.
The protocol stack is a beautiful invention, and it works so well that we generally take it for granted.
It is a great example of abstracting functionality: each layer has its own work to do and can rely on others to deal with the rest.
(Although these layer terms are borrowed from OSI, OSI was actually a competing standard to TCP/IP, and included things like the "session layer" and "presentation layer" that TCP/IP doesn't use. OSI was intended to be a more sane and standardized alternative to the scrappy hacked-together TCP/IP stack, but while it was still being discussed, TCP/IP was already working and was widely adopted.)
Because the layers can be mixed and matched as needed, the stack is flexible enough to accommodate nearly any use we can think of, so it's probably going to be around for a long time. And hopefully now you can appreciate it a bit more.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With