I have N
people who must each take T
exams. Each exam takes "some" time, e.g. 30 min (no such thing as finishing early). Exams must be performed in front of an examiner.
I need to schedule each person to take each exam in front of an examiner within an overall time period but avoiding a lunch break, using the minimum number of examiners for the minimum amount of time (i.e. no/minimum examiners idle)
There are the following restrictions:
I realise that an optimal solution is probably NP-Complete, and that I'm probably best off using a genetic algorithm to obtain a best estimate (similar to this? Seating plan software recommendations (does such a beast even exist?)).
I'm comfortable with how genetic algorithms work, what i'm struggling with is how to model the problem programatically such that i CAN manipulate the parameters genetically..
If each exam took the same amount of time, then i'd divide the time period up into these lengths, and simply create a matrix of time slots vs examiners and drop the candidates in. However because the times of each test are not necessarily the same, i'm a bit lost on how to approach this.
currently im doing this:
i'm looking for better suggestions on how to approach this, as it feels rather crude currently.
As julienaubert proposed, a solution (which I will call schedule) is a sequence of tuples (date, student, examiner, test) that covers all relevant student-test combinations (do all N students take all T tests?). I understand that a single examiner may test several students at once. Otherwise, a huge number of examiners will be required (at least one per student), which I really doubt.
Two tuples A and B conflict if
Notice that tuple conflicts are different from schedule conflicts (which must additionally check for the repeated examiner problem).
Lower bounds:
A simple, greedy schedule can be constructed by the following method:
Improving the choices made in step 2 above is critical to improvement; this choice can form the basis for heuristic search. The above algorithm tries to minimize the number of examiners required, at the expense of student time (students may end up with one exam early on and another last thing in the day, nothing in between). However, it is guaranteed to yield legal solutions. Running it with different students can be used to generate "starting" solutions to a GA that sticks to legal answers.
In general, I believe there is no "perfect answer" to a problem like this one, because there are so many factors that must be taken into account: students would like to minimize their total time spent examining themselves, as would examiners; we would like to minimize the number of examiners, but there are also practical limitations to how many students we can stack in a room with a single examiner. Also, we would like to make the scheduling "fair", so nobody is clearly getting much worse than others. So the best you can hope to do is to allow these knobs to be fiddled with, the results to be known (total time, per-student happiness, per-examiner happiness, exam sizes, perceived fairness) and allow the user to explore the parameter space and make an informed choice.
I'd recommend using a SAT solver for this. Although the problem is probably NP-hard, good SAT solvers can often handle hundreds of thousands of variables. Check out Chaff or MiniSat for two examples.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With