I want to sum adjacent elements in scala and I'm not sure how to deal with the last element.
So I have a list:
val x = List(1,2,3,4)
And I want to sum adjacent elements using indices and map:
val size = x.indices.size
val y = x.indices.map(i =>
if (i < size - 1)
x(i) + x(i+1))
The problem is that this approach creates an AnyVal elemnt at the end:
res1: scala.collection.immutable.IndexedSeq[AnyVal] = Vector(3, 5, 7, ())
and if I try to sum the elements or another numeric method of the collection, it doesn't work:
error: could not find implicit value for parameter num: Numeric[AnyVal]
I tried to filter out the element using:
y diff List(Unit) or y diff List(AnyVal)
but it doesn't work.
Is there a better approach in scala to do this type of adjacent sum without using a foor loop?
For a more functional solution, you can use sliding
to group the elements together in twos (or any number of them), then map
to their sum
.
scala> List(1, 2, 3, 4).sliding(2).map(_.sum).toList
res80: List[Int] = List(3, 5, 7)
What sliding(2)
will do is create an intermediate iterator of lists like this:
Iterator(
List(1, 2),
List(2, 3),
List(3, 4)
)
So when we chain map(_.sum)
, we will map each inner List
to it's own sum. toList
will convert the Iterator
back into a List
.
You can try pattern matching and tail recursion also.
import scala.annotation.tailrec
@tailrec
def f(l:List[Int],r :List[Int]=Nil):List[Int] = {
l match {
case x :: xs :: xss =>
f(l.tail, r :+ (x + xs))
case _ => r
}
}
scala> f(List(1,2,3,4))
res4: List[Int] = List(3, 5, 7)
With a for comprehension by zipping two lists, the second with the first item dropped,
for ( (a,b) <- x zip x.drop(1) ) yield a+b
which results in
List(3, 5, 7)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With