I am confused about the interface of std::find
. Why doesn't it take a Compare
object that tells it how to compare two objects?
If I could pass a Compare
object I could make the following code work, where I would like to compare by value, instead of just comparing the pointer values directly:
typedef std::vector<std::string*> Vec;
Vec vec;
std::string* s1 = new std::string("foo");
std::string* s2 = new std::string("foo");
vec.push_back(s1);
Vec::const_iterator found = std::find(vec.begin(), vec.end(), s2);
// not found, obviously, because I can't tell it to compare by value
delete s1;
delete s2;
Is the following the recommended way to do it?
template<class T>
struct MyEqualsByVal {
const T& x_;
MyEqualsByVal(const T& x) : x_(x) {}
bool operator()(const T& y) const {
return *x_ == *y;
}
};
// ...
vec.push_back(s1);
Vec::const_iterator found =
std::find_if(vec.begin(), vec.end(),
MyEqualsByVal<std::string*>(s2)); // OK, will find "foo"
find
can't be overloaded to take a unary predicate instead of a value, because it's an unconstrained template parameter. So if you called find(first, last, my_predicate)
, there would be a potential ambiguity whether you want the predicate to be evaluated on each member of the range, or whether you want to find a member of the range that's equal to the predicate itself (it could be a range of predicates, for all the designers of the standard libraries know or care, or the value_type
of the iterator could be convertible both to the predicate type, and to its argument_type
). Hence the need for find_if
to go under a separate name.
find
could have been overloaded to take an optional binary predicate, in addition to the value searched for. But capturing values in functors, as you've done, is such a standard technique that I don't think it would be a massive gain: it's certainly never necessary since you can always achieve the same result with find_if
.
If you got the find
you wanted, you'd still have to write a functor (or use boost), since <functional>
doesn't contain anything to dereference a pointer. Your functor would be a little simpler as a binary predicate, though, or you could use a function pointer, so it'd be a modest gain. So I don't know why this isn't provided. Given the copy_if
fiasco I'm not sure there's much value in assuming there are always good reasons for algorithms that aren't available :-)
Since your T
is a pointer, you may as well store a copy of the pointer in the function object.
Other than that, that is how it is done and there's not a whole lot more to it.
As an aside, it's not a good idea to store bare pointers in a container, unless you are extremely careful with ensuring exception safety, which is almost always more hassle than it's worth.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With